Relational Normalization Theory

Chapter 6

Topics

- Limitations of ER modeling
 - Functional Dependencies
 - Normal Forms
 - Decompositions
 - Algorithms for BCNF and 3NF
 - Normalization & Performance

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design
 - Concepts and algorithms

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, Name, Address, Hobbies)
 - A person entity with multiple hobbies yields multiple rows in table Person
 - Hence, the association between Name and Address for the same person is stored redundantly
 - SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
 - The relation Person can’t describe people without hobbies
Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking, hiking</td>
</tr>
<tr>
<td>2222</td>
<td>Kyle</td>
<td>4 Pine</td>
<td>{stamps, biking}</td>
</tr>
</tbody>
</table>

Anomalies

- Redundancy leads to anomalies:
 - Update anomaly: A change in Address must be made in several places
 - Deletion anomaly: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? No, since Hobby is part of key
 - Delete the entire row? No, since we lose other information in the row
 - Insertion anomaly: Hobby value must be supplied for any inserted row since Hobby is part of key
- Sometimes the term Update anomaly is used for as a generic term for all 3 types of anomaly

Redundancy without Set Valued Attributes

- Dependencies between attributes cause redundancy
 - Ex. All addresses in the same town have the same zip code (for a small enough town)

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Town</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Joe</td>
<td>Stony Brok</td>
<td>11790</td>
</tr>
<tr>
<td>4321</td>
<td>Mary</td>
<td>Stony Brok</td>
<td>11790</td>
</tr>
<tr>
<td>5454</td>
<td>Tom</td>
<td>Stony Brok</td>
<td>11790</td>
</tr>
</tbody>
</table>

Removing redundancy: Decomposition

- Solution: use two relations to store Person information
 - Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- Decomposition removes redundancy
 - Yes, SSN repeated in Hobbies (more on next slide)
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted
 - People without hobbies can now be described
Problem with Repeated SSN?

- But SSN is repeated in Hobbies. If SSN changes, we will have to update multiple rows in Hobbies
 - How big a problem is it?

1. SSN is needed in Hobbies
 - Not all decompositions are equal
 - No redundancy if we decompose into 4 relations with 1 attribute each: SSN, Name, Address, Hobby. But the decomposition is meaningless

2. If SSN (or whatever attribute is the identifier) is static, then it would never be updated

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
 - But all decompositions are not created equal
- The underlying theory for decomposing relations is referred to as normalization theory
 - Decide whether a particular relation is in a “good” form
 - If not, decompose it into a set of relations that are in “good” form
- Normalization is based on
 - functional dependencies which are a generalization of the concept of key constraints
 - and other kinds of dependencies, e.g., multivalued dependencies

Topics

- Limitations of ER modeling
- Functional Dependencies
 - Definition
 - Properties of FDs
- Normal Forms
- Decompositions
- Algorithms for BCNF and 3NF
- Normalization & Performance

Functional Dependencies

- **Definition:** A functional dependency (FD) on a relation schema \(R \) is a constraint \(X \rightarrow Y \), where \(X \) and \(Y \) are subsets of attributes of \(R \).
- **Definition:** An FD \(X \rightarrow Y \) is satisfied in an instance \(r \) of \(R \) if for every pair of tuples, \(t \) and \(s \): if \(t \) and \(s \) agree on all attributes in \(X \) then they must agree on all attributes in \(Y \)
FDs: Examples

- In the relation schema:
 - Person: SSN, Name, Address, Hobby
- The following FDs are satisfied:
 - SSN → Name
 - SSN → Address
- But the following FDs are not satisfied:
 - SSN → Hobby
 - Hobby → Name

FDs – Example 2

- Consider a brokerage firm that:
 - allows multiple clients to share an account, but each account is managed from a single office and
 - a client can have no more than one account in an office
- HasAccount (AcctNum, ClientId, OfficeId)
 - keys are (ClientId, OfficeId), (AcctNum, ClientId)
 - ClientId, OfficeId → AcctNum
 - AcctNum → OfficeId
 - Thus, attribute values need not depend only on key values

FDs: Comments

- FDs are identified from the enterprise being modeled
- Author, Title → PublDate
 - Shakespeare’s Hamlet published in 1600
 - If multiple editions of a book (same Author and Title) are given different PublDate, then the above FD will not be hold in the corresponding schema
- It may happen that an instance of a relation satisfies some FDs accidentally
 - E.g., in our example, Name → Address
- But such satisfaction is merely accidental if such an FD is not part of the relation schema
 - It would be legal to add tuple where Name is the same but Address is different

FDs: Comments (cont’d)

- Key constraint is a special kind of functional dependency:
 - all attributes of relation occur on the right-hand side of the FD:
- E.g., Relation
 - Person: SSN, Address, Name, Hobby
 - is decomposed into
 - Person1: SSN, Address, Name and
 - Hobbies: SSN, Hobby
- Then Person1 satisfies the FD
 - SSN → SSN, Name, Address
Topics

- Limitations of ER modeling
- Functional Dependencies
 - Definition
 - Properties of FDs
- Normal Forms
- Decompositions
- Algorithms for BCNF and 3NF
- Normalization & Performance

Entailment, Closure, Equivalence

- Definition: If F is a set of FDs on schema R and f is another FD on R, then F entails f if every instance r of R that satisfies every FD in F also satisfies f
 - Ex: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
 - If $Town \rightarrow Zip$ and $Zip \rightarrow AreaCode$ then $Town \rightarrow AreaCode$
 - Note: The term covers is also used as a synonym to entails
- Definition: The closure of F, denoted F^+, is the set of all FDs entailed by F
- Definition: F and G are equivalent if F entails G and G entails F

Entailment (cont’d)

- Satisfaction, entailment, and equivalence are semantic concepts – defined in terms of the actual relations in the “real world.”
 - They define what these notions are, not how to compute them
- How to check if F entails f or if F and G are equivalent?
 - Develop an algorithmic, syntactic ways to compute these notions

Armstrong’s Axioms for FDs

- This is the syntactic way of computing/testing the various properties of FDs
 - Will use these as inference rules to test entailment
- Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
 - Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - If $Town \rightarrow Zip$ then $Town, Name \rightarrow Zip, Name$
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
Proof of Reflexivity

- Let \(Y \) and \(X \) be two subsets of the attributes in a relation schema \(R \) such that \(Y \subseteq X \).
- Consider two tuples \(t_1 \) and \(t_2 \) in some relation instance \(r \) of \(R \) such that
 - \(t_1 [X] = t_2 [X] \)
- Then it must be the case that
 - \(t_1 [Y] = t_2 [Y] \) since \(Y \subseteq X \)
- Hence if \(Y \subseteq X \) then \(X \rightarrow Y \)

Proof of Augmentation

- We will prove this inference rule by contradiction
- Assume \(X \rightarrow Y \) holds in a relation instance \(r \) of \(R \) but \(XZ \rightarrow YZ \) does not hold
- For this to be true, there must be two tuples \(t_1 \) and \(t_2 \) in \(r \) such that:
 - i) \(t_1 [X] = t_2 [X] \)
 - ii) \(t_1 [Y] = t_2 [Y] \) (by \(X \rightarrow Y \))
 - iii) \(t_1 [XZ] = t_2 [XZ] \) (LHS of \(XZ \rightarrow YZ \))
 - iv) \(t_1 [YZ] \neq t_2 [YZ] \) (RHS of \(XZ \rightarrow YZ \))
- From i) and iii) we deduce that \(t_1 [Z] = t_2 [Z] \)
- and from ii) and iv) we deduce that \(t_1 [YZ] \neq t_2 [YZ] \)
 - which is a contradiction
- Hence it must be that if \(X \rightarrow Y \) holds \(XZ \rightarrow YZ \) also hold

Proof of Transitivity

- Assume the following FDs hold in a relation schema \(R \)
 - i) \(X \rightarrow Y \) and
 - ii) \(Y \rightarrow Z \)
- Consider two tuples \(t_1 \) and \(t_2 \) in some relation instance \(r \) of \(R \) such that
 - iii) \(t_1 [X] = t_2 [X] \)
- Then from i) and iii) we deduce
 - iv) \(t_1 [Y] = t_2 [Y] \)
- Furthermore from ii) and iv) we deduce
 - v) \(t_1 [Z] = t_2 [Z] \)
- Hence from iii) and v) we deduce that \(X \rightarrow Z \)

More Derivation Rules: 1

- If \(X \rightarrow Y \) and \(X \rightarrow Z \) are satisfied by a relation then \(X \rightarrow YZ \) is satisfied by that relation
- Proof:
 - Given \(X \rightarrow Y \) and \(X \rightarrow Z \)
 \(X \rightarrow XY \) Augmentation by \(X \)
 \(YX \rightarrow YZ \) Augmentation by \(Y \)
 \(X \rightarrow YZ \) Transitivity
- We have derived the Union Rule for FDs:
 - An FD can be formed with the union of the RHSs of FDs that have the same LHS
More Derivation Rules: 2

• If \(X \rightarrow YZ \) is satisfied by a relation then that relation also satisfies \(X \rightarrow Y \) and \(X \rightarrow Z \)

• Proof:
 – Given \(X \rightarrow YZ \)
 \[YZ \rightarrow Y \] Reflexivity
 \[X \rightarrow Y \] Transitivity
 \(X \rightarrow Z \) is derived a similar manner

• We now also have derived the Decomposition Rule for FDs:
 – Given an FD with multiple attributes on the RHS, we can derive an FD with LHS of the original FD and any subset of attributes on the RHS

Soundness & Completeness

• Axioms are sound:
 – If an FD \(f: X \rightarrow Y \) can be derived from a set of FDs \(F \) using the axioms, then \(f \) holds in every relation that satisfies every FD in \(F \).

• Axioms are complete:
 – If \(F \) entails \(f \), then \(f \) can be derived from \(F \) using the axioms

• A consequence of completeness is the following (naive) algorithm to determining if \(F \) entails \(f \):
 – Use the axioms in all possible ways to generate \(F^+ \) (the set of possible FD’s is finite so this can be done) and see if \(f \) is in \(F^+ \)

Attribute Closure

• Calculating attribute closure leads to a more efficient way of checking entailment

• The attribute closure of a set of attributes, \(X \), with respect to a set of functional dependencies, \(F \), (denoted \(X^+_F \)) is the set of all attributes, \(A \), such that \(X \rightarrow A \)
 – \(X^+_F \) is not necessarily the same as \(X^+_{\overline{F}} \) if \(F1 \neq F2 \)

• Attribute closure and entailment:
 – Algorithm: Given a set of FDs, \(F \), then \(X \rightarrow Y \) if and only if \(X^+_F \supseteq Y \)

Computation of Attribute Closure \(X^+_F \)

\[
\begin{align*}
closure & := X; \quad \text{// since } X \subseteq X^+_F \\
\text{repeat} \\
old & := closure; \\
\text{if} \text{ there is an FD } Z \rightarrow V \text{ in } F \text{ such that } \\
\text{Z} & \subseteq \text{closure and } V \notin \text{closure} \\
\text{then} \ closure & := closure \cup V \\
\text{until } old = closure \\
\text{– If } T \subseteq \text{closure then } X \rightarrow T \text{ is entailed by } F
\end{align*}
\]
Example: Computation of Attribute Closure

Problem: Compute the attribute closure of AB with respect to the set of FDs:

- $AB \rightarrow C$ (a)
- $A \rightarrow D$ (b)
- $D \rightarrow E$ (c)
- $AC \rightarrow B$ (d)

Solution:

Initially $\text{closure} = \{AB\}$

Using (a) $\text{closure} = \{ABC\}$

Using (b) $\text{closure} = \{ABCD\}$

Using (c) $\text{closure} = \{ABCD\}$

Example - Computing Attribute Closure

<table>
<thead>
<tr>
<th>X</th>
<th>X_F^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>${A, D, E}$</td>
</tr>
<tr>
<td>AB</td>
<td>${A, B, C, D, E}$</td>
</tr>
</tbody>
</table>

(Hence AB is a key)

Is $AB \rightarrow E$ entailed by F? Yes

Is $D \rightarrow C$ entailed by F? No

Result: X_F^+ allows us to determine FDs of the form $X \rightarrow Y$ entailed by F

Topics

- Limitations of ER modeling
- Functional Dependencies
- Normal Forms
- Decompositions
- Algorithms for BCNF and 3NF
- Normalization & Performance

Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF):
 - each tuple = sequence of atomic values
 - same as the definition of relational model
- Second normal form (2NF):
 - has no practical or theoretical value – won’t discuss
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)
BCNF

Definition: A relation schema R is in BCNF if for every FD $X \rightarrow Y$ associated with R either
- $Y \subseteq X$ (i.e., the FD is trivial) or
- X is a superkey of R

Example: Person1(SSN, $Name$, $Address$)
- The only FD is $SSN \rightarrow Name$, $Address$
- Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- **Person (SSN, $Name$, $Address$, $Hobby$)**
 - The FD $SSN \rightarrow Name$, $Address$ does not satisfy requirements of BCNF
 - since the key is (SSN, $Hobby$)
- **HasAccount ($AcctNum$, $ClientId$, $OfficeId$)**
 - The FD $AcctNum \rightarrow OfficeId$ does not satisfy BCNF requirements
 - since keys are ($ClientId$, $OfficeId$) and ($AcctNum$, $ClientId$), not $AcctNum$.

Redundancy & BCNF

- Suppose R has a FD $A \rightarrow B$, and A is not a superkey. If an instance has 2 rows with same value in A, they must also have same value in B (⇒ redundancy, if the A-value repeats twice)

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>stamps</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>coins</td>
</tr>
</tbody>
</table>

- If A is a superkey, there cannot be two rows with same value of A
 - Hence, BCNF eliminates redundancy

Third Normal Form

- A relational schema R is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - X is a superkey of R; or
 - Every $A \in Y$ is part of some key of R
- 3NF is weaker than BCNF
 - every scheme that is in BCNF is also in 3NF
3NF Example

- **HasAccount** \((AcctNum, ClientId, OfficeId)\)
 - \(ClientId, OfficeId \rightarrow AcctNum\)
 - OK since LHS contains a key
 - \(AcctNum \rightarrow OfficeId\)
 - OK since RHS is part of a key
- HasAccount is in 3NF but it might still contain redundant information due to \(AcctNum \rightarrow OfficeId\)
 - which is not allowed by BCNF

3NF (Non) Example

- **Person** \((SSN, Name, Address, Hobby)\)
 - \((SSN, Hobby)\) is the only key.
 - \(SSN \rightarrow Name\) violates 3NF conditions since \(Name\) is not part of a key and \(SSN\) is not a superkey

Topics

- Limitations of ER modeling
- Functional Dependencies
- Normal Forms
- Decompositions
 - Lossless
 - Dependency preserving
- Algorithms for BCNF and 3NF
- Normalization & Performance

Lossless Decomposition

- **Goal:**
 - Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition must be lossless:
 - it must be possible to reconstruct the original relation from the relations in the decomposition
Decomposition: Definition

- Schema \(R = (R, F) \)
 - \(R \) is a set of attributes
 - \(F \) is a set of functional dependencies over \(R \)
 - Each key is described by a FD
- The decomposition of schema \(R \) is a collection of schemas \(R_i = (R_i, F_i) \) where
 - \(R = \bigcup_i R_i \) (no new, but all original attributes)
 - \(F_i \) is a set of functional dependencies involving only attributes of \(R_i \)
 - \(F \) entails \(F_i \) for all \(i \) (no new FDs)
- The decomposition of an instance, \(r \), of \(R \) is a set of relations \(r_i = \pi_{R_i}(r) \) for all \(i \)

Decomposition: Example

Schema \((R, F)\) where
\[R = \{\text{SSN, Name, Address, Hobby}\} \]
\[F = \{\text{SSN} \rightarrow \text{Name, Address}\} \]
can be decomposed into
\[R_1 = \{\text{SSN, Name, Address}\} \]
\[F_1 = \{\text{SSN} \rightarrow \text{Name, Address}\} \]
and
\[R_2 = \{\text{SSN, Hobby}\} \]
\[F_2 = \{\} \]

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition \((R_1, \ldots, R_n)\) of a schema, \(R \), is lossless if every valid instance, \(r \), of \(R \) can be reconstructed from its components:
\[r = r_1 \times r_2 \times \cdots \times r_n \]
- where each \(r_i = \pi_{R_i}(r) \)

Lossy Decomposition

The following is always the case (as long as join attributes don't have null values):
\[r \subseteq r_1 \times r_2 \times \cdots \times r_n \]
But the following is not always true:
\[r \supseteq r_1 \times r_2 \times \cdots \times r_n \]

Example:
\[
\begin{array}{|c|c|}
\hline
\text{SSN} & \text{Name} & \text{Address} \\
\hline
1111 & Joe & 1 Pine \\
2222 & Alice & 2 Oak \\
3333 & Alice & 3 Pine \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
\text{SSN} & \text{Name} \\
\hline
1111 & Joe \\
2222 & Alice \\
3333 & Alice \\
\hline
\end{array}
\]

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original.
Lossy Decompositions: What is Actually Lost?

• In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were gained, not lost!
 – Why do we say that the decomposition was lossy?

• What was lost is information:
 – That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 – That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

• A (binary) decomposition of $R = (R, F)$ into $R_1 = (R_1, F_1)$ and $R_2 = (R_2, F_2)$ is lossless if and only if:
 – either the FD $\{ (R_1 \cap R_2) \rightarrow R_1 \}$ is in F^+
 – or the FD $\{ (R_1 \cap R_2) \rightarrow R_2 \}$ is in F^+

Example

Schema (R, F) where

$R = \{ SSN, Name, Address, Hobby \}$

$F = \{ SSN \rightarrow Name, Address \}$

can be decomposed into

$R_1 = \{ SSN, Name, Address \}$

$F_1 = \{ SSN \rightarrow Name, Address \}$

and

$R_2 = \{ SSN, Hobby \}$

$F_2 = \{ \}$

Since $R_1 \cap R_2 = SSN$ and $SSN \rightarrow R_1$ the decomposition is lossless

Intuition Behind the Test for Losslessness

• Suppose $R_1 \cap R_2 \rightarrow R_2$. Then a row of r_1 can combine with exactly one row of r_2 in the natural join (since in r_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row)
Topics

- Limitations of ER modeling
- Functional Dependencies
- Normal Forms
- Decompositions
 - Lossless
 - Dependency preserving
- Algorithms for BCNF and 3NF
- Normalization & Performance

Is Lossless Decomposition the only Desirable Property?

- HasAccount (AcctNum, ClientId, OfficeId)
 \[f_1: \text{AcctNum} \rightarrow \text{OfficeId} \]
 \[f_2: \text{ClientId, OfficeId} \rightarrow \text{AcctNum} \]

- Decomposition:
 \[R_1 = (\text{AcctNum, OfficeId}; \{ \text{AcctNum} \rightarrow \text{OfficeId} \}) \]
 \[R_2 = (\text{AcctNum}, \text{ClientId}; \{\}) \]

- Decomposition is lossless:
 \[R_1 \cap R_2 = \{\text{AcctNum}\} \]
 and \[\text{AcctNum} \rightarrow \text{OfficeId} \]

- Both \[R_1 \] and \[R_2 \] are in BCNF
- But is something missing in the decomposition?
 \[f_2 \]
 cannot be expressed on either \[R_1 \] or \[R_2 \]

Cost of Enforcing FDs

- Consider a decomposition of \[R = (R, F) \] into \[R_1 = (R_1, F_1) \] and \[R_2 = (R_2, F_2) \]
 - An FD \[X \rightarrow Y \] of \[F^+ \] is in \[F_1 \] iff \[X \cup Y \subseteq R_1 \]
 - An FD, \[f \in F^+ \] may be in neither \[F_1 \], nor \[F_2 \], nor even \[(F_1 \cup F_2)^+ \]

- Checking that \[f \] is true in \[r_1 \] or \[r_2 \] is (relatively) easy
- Checking \[f \] in \[r_1 \bowtie r_2 \] is harder – requires a join
- Ideally: want to check FDs locally, in \[r_1 \] and \[r_2 \], and have a guarantee that every \[f \in F \] holds in \[r_1 \bowtie r_2 \]

Dependency Preservation

- The decomposition is dependency preserving iff the sets \[F \] and \[F_1 \cup F_2 \] are equivalent: \[F^+ = (F_1 \cup F_2)^+ \]
 - Then checking all FDs in \[F \] as \[r_1 \] and \[r_2 \] are updated, can be done by checking \[F_1 \] in \[r_1 \] and \[F_2 \] in \[r_2 \]
- If \[f \] is an FD in \[F \] but \[f \] is not in \[F_1 \cup F_2 \] there are two possibilities:
 - \[f \in (F_1 \cup F_2)^+ \]
 - If the constraints in \[F_1 \] and \[F_2 \] are maintained, \[f \] will be maintained automatically.
 - \[f \notin (F_1 \cup F_2)^+ \]
 - \[f \] can be checked only by first taking the join of \[r_1 \] and \[r_2 \]. This is costly.
Example

Schema \((R, F)\) where

\[R = \{\text{SSN}, \text{Name}, \text{Address}, \text{Hobby}\} \]
\[F = \{\text{SSN} \rightarrow \text{Name}, \text{Address}\} \]

can be decomposed into

\[R_1 = \{\text{SSN}, \text{Name}, \text{Address}\} \]
\[F_1 = \{\text{SSN} \rightarrow \text{Name}, \text{Address}\} \]

and

\[R_2 = \{\text{SSN}, \text{Hobby}\} \]
\[F_2 = \{\} \]

Since \(F = F_1 \cup F_2\) the decomposition is dependency preserving.

Example

• Schema: \((\text{ABC}; F), F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)

• Decomposition:
 – \((AC, F_1), F_1 = \{A \rightarrow C\}\)
 • Note: \(A \rightarrow C \notin F\), but in \(F^+\)
 – \((BC, F_2), F_2 = \{B \rightarrow C, C \rightarrow B\}\)

• \(A \rightarrow B \notin (F_1 \cup F_2)\), but \(A \rightarrow B \in (F_1 \cup F_2)^+\).
 – So \(F^+ = (F_1 \cup F_2)^+\) and thus the decompositions is still dependency preserving.

Example

• HasAccount \((\text{AccntNum}, \text{ClientId}, \text{OfficeId})\)
 \[f_1: \text{AccntNum} \rightarrow \text{OfficeId} \]
 \[f_2: \text{ClientId, OfficeId} \rightarrow \text{AccntNum} \]

• Decomposition:
 \[R_1 = (\text{AccntNum, OfficeId}; \{\text{AccntNum} \rightarrow \text{OfficeId}\}) \]
 \[R_2 = (\text{AccntNum, ClientId}; \{\}) \]

• Decomposition is lossless:
 \[R_1 \cap R_2 = \{\text{AccntNum}\} \text{ and AccntNum} \rightarrow \text{OfficeId} \]

• In BCNF
 • Not dependency preserving: \(f_2 \notin (F_1 \cup F_2)^+\)

 • HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (Check, e.g. by enumeration)

 • Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

Topics

• Limitations of ER modeling
• Functional Dependencies
• Normal Forms
• Decompositions
 → Algorithms for BCNF and 3NF
• Normalization & Performance
Third Normal Form

- **Compromise** – Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)
- **3NF decomposition** is based on a **minimal cover**
 - Another name for minimal cover is **canonical cover**

Minimal Cover

- A **minimal cover** of a set of dependencies, F, is a set of dependencies, U, such that:
 - U is equivalent to F ($F^+ = U^+$)
 - All FDs in U have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called **redundant**

Computing Minimal Cover

- **Example**: $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E,
 BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$
- **step 1**: Make RHS of each FD into a single attribute
 - **Algorithm**: Use the decomposition inference rule for FDs
 - Example: $L \rightarrow AD$ replaced by $L \rightarrow A, L \rightarrow D$; $ABH \rightarrow CK$ by $ABH \rightarrow C, ABH \rightarrow K$
- **step 2**: Eliminate redundant attributes from LHS.
 - **Algorithm**: If FD $XB \rightarrow A \in F$ (where B is a single attribute) and $X \rightarrow A$ is entailed by F, then B was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute ABF, and AIF and BIF
 - Since $C \in (BIF)$, therefore $BH \rightarrow C$ is entailed by F and A is redundant in $ABH \rightarrow C$.
- **step 3**: Delete redundant FDs from F
 - **Algorithm**: If $F - \{f\}$ entails f, then f is redundant
 - If f is $X \rightarrow A$ then check if $A \in X^+$
 - Example: $BGH \rightarrow L$ is entailed by $E \rightarrow L, BH \rightarrow E$, so it is redundant
- **Note**:
 - The order of steps 2 and 3 cannot be interchanged! See the textbook for a counterexample
 - A minimal cover might not be unique!
Synthesizing a 3NF Schema
Starting with a schema \(R = (R, F) \)

- **step 1**: Compute a minimal cover, \(U \), of \(F \). The decomposition is based on \(U \), but since \(U^+ = F^+ \) the same functional dependencies will hold
 - A minimal cover for \(F = \{ ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E \} \) is
 \[U = \{ BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L \} \]

Synthesizing a 3NF Schema (cont’d)

- **step 2**: Partition \(U \) into sets \(U_1, U_2, \ldots, U_n \) such that the LHS of all elements of \(U_i \) are the same
 - \(U_1 = \{ BH \rightarrow C, BH \rightarrow K \} \), \(U_2 = \{ A \rightarrow D \} \), \(U_3 = \{ C \rightarrow E \} \), \(U_4 = \{ L \rightarrow A \} \), \(U_5 = \{ E \rightarrow L \} \)

Synthesizing a 3NF schema (cont’d)

- **step 3**: For each \(U_i \) form schema \(R_i = (R_i, U_i) \), where \(R_i \) is the set of all attributes mentioned in \(U_i \)
 - Each FD of \(U \) will be in some \(R_i \). Hence the decomposition is dependency preserving
 - \(R_1 = (BHCK; BH \rightarrow C, BH \rightarrow K) \), \(R_2 = (AD; A \rightarrow D) \), \(R_3 = (CE; C \rightarrow E) \), \(R_4 = (AL; L \rightarrow A) \), \(R_5 = (EL; E \rightarrow L) \)

- **step 4**: If no \(R_i \) is a superkey of \(R \), add schema \(R_0 = (R_0, \{\}) \) where \(R_0 \) is a key of \(R \)
 - \(R_0 = (BGH; \{\}) \)
 - \(R_0 \) might be needed when not all attributes are necessarily contained in \(R_1 \cup R_2 \cup \cdots \cup R_n \)
 - A missing attribute, \(A \), must be part of all keys
 (since it’s not in any FD of \(U \), deriving a key constraint from \(U \) involves the augmentation axiom)
 - \(R_0 \) might be needed even if all attributes are accounted for in \(R_1 \cup R_2 \cup \cdots \cup R_n \)
 - Example: \((ABCD; \{A \rightarrow B, C \rightarrow D\}) \)
 - Step 3 decomposition: \(R_1 = (AB; \{A \rightarrow B\}) \), \(R_2 = (CD; \{C \rightarrow D\}) \)
 - Lossy! Need to add \((AC; \{\}) \), for losslessness
 - Step 4 guarantees lossless decomposition.
Topics

- Limitations of ER modeling
- Functional Dependencies
- Normal Forms
- Decompositions
- Algorithms for BCNF and 3NF
 - 3 NF Synthesis Algorithm
 - BCNF Decomposition Algorithm
- Normalization & Performance

BCNF Decomposition Algorithm

- You can skip this topic (Section 6.7 in the book)
- Briefly:
 - The BCNF decomposition algorithm works by using an FD that violates BCNF form and uses this FD to decompose the schema
 - The FDs attached to a decomposed schema include all FDs involving attributes of the decomposed schema
 - This set must include any FDs entailed in the original set of FDs
 - The algorithm given in the book has exponential complexity
 - Alternate (more complex) algorithm exists with polynomial complexity

BCNF Design Strategy

If we use the 3NF Synthesis Algorithm

- The resulting decomposition, \(R_0, R_1, \ldots, R_n \), is
 - Dependency preserving (since every FD in \(U \) is a FD of some schema)
 - Lossless (although this is not obvious)
 - In 3NF (although this is not obvious)
- Strategy for decomposing a relation
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a non-dependency preserving result)

Topics

- Limitations of ER modeling
- Functional Dependencies
- Normal Forms
- Decompositions
- Algorithms for BCNF and 3NF
 - Normalization & Performance
Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space.
- But performance of querying can suffer because related information that could be stored in a single relation is now distributed among several.
- **Example**: A join is required to get the names and hobbies of all persons.

```sql
SELECT P.Name, H.Hobby
FROM Person P, Hobby H
WHERE P.SSN = H.SSN
```

Denormalization

- **Tradeoff**: Judiciously introduce redundancy to improve performance of certain queries.
- **Example**: In our Student registration schema
 - to find the names of students taking a given class in a particular semester
 - a join is required between Student and Transcript table:

```sql
SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
  T.CrsCode = 'CS305' AND T.Semester = 'S2004'
```

Denormalization (cont’d)

- Add attribute Name to Transcript

```sql
SELECT T.Name, T.Grade
FROM Transcript T
WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

 Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance.
- But, Transcript1 is no longer in BCNF
 - since key is (StudId, CrsCode, Semester) and StudId → Name
- Updates to Student.Name must keep the database consistent
 - These updates are also slowed down

Topics

- Limitations of ER modeling
- Functional Dependencies
- Normal Forms
- Decompositions
- Algorithms for BCNF and 3NF
- Normalization & Performance
- Summary
Summary

• In the beginning we noted some of the problems with ER modeling:
 – Provides a set of guidelines, does not result in a unique database schema
 – Does not provide a way of evaluating alternative schemas
• Normalization theory was introduced to solve these problems
 – (How) did we solve the problems?

Summary (cont’d)

• The key concepts were functional dependencies, normal forms and decompositions
• FDs must be identified during the conceptual schema design
• Using FDs, we can determine if a schema has redundancy due to not being normalized
 – We do not need an instance of the schema to determine redundancy
 – We can reason based on FDs to determine properties that must hold on all valid instances of the schema
• 3 NF and BCNF are two desirable forms of the schema

Summary (cont’d)

• The solution to the redundancy problem is decomposition to a desired normal form
• We identified desirable properties of decompositions
 – Losslessness, dependency preservation
 – For an arbitrary schema, it is not guaranteed that a BCNF decomposition will have both these properties
 – Always possible to have a 3 NF decomposition which is both lossless and preserves dependency

Summary (cont’d)

• Algorithms exist to normalize a schema to 3 NF or to BCNF
 – Studied the 3 NF synthesis algorithm
 – A unique database schema is not guaranteed
 – Not that big an issue, since any schema produced by the algorithm will be in 3 NF, lossless, dependency preserving
• Normalization can reduce performance of queries
 – Denormalize? Be careful
Summary (cont’d)

- In some relational schemas, even a schema in BCNF would suffer from the problem of repetition of information
- This sort of redundancy can be eliminated by higher forms of normalization: 4NF, 5NF
 - Using the concept of multivalued dependencies (for 4NF), join dependencies (5NF)

Fourth Normal Form

<table>
<thead>
<tr>
<th>SSN</th>
<th>PhoneN</th>
<th>ChildSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111</td>
<td>123-4444</td>
<td>222222</td>
</tr>
<tr>
<td>11111</td>
<td>123-4444</td>
<td>333333</td>
</tr>
<tr>
<td>11111</td>
<td>321-5555</td>
<td>222222</td>
</tr>
<tr>
<td>11111</td>
<td>321-5555</td>
<td>333333</td>
</tr>
<tr>
<td>22222</td>
<td>987-6666</td>
<td>444444</td>
</tr>
<tr>
<td>22222</td>
<td>777-7777</td>
<td>444444</td>
</tr>
<tr>
<td>22222</td>
<td>987-6666</td>
<td>555555</td>
</tr>
<tr>
<td>22222</td>
<td>777-7777</td>
<td>555555</td>
</tr>
</tbody>
</table>

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs