
luated
hat of
uffi-

th the
are
nt
anager,
t, and

men-

 moti-

g opti-

ogram-
he
wn to
ull of
spect,
ugh
ed in

ent.)
ut now

ercial
wider

ver C
The pro-
t real-
s of

 is
from
 that

are

ult. All
unica-

onsible
This is an excerpt taken from the paper:C++? A Critique of C++ and Programming Language Trends of the
1990’s. 3rd Edition. Ian Joyner. Paper was written in 1996.
I, Jaime Niño, added some comments in places for more elucidation to the students.
The full paper, with no added comments, is available via the 4501-course web page.
The Role of a Programming Language
A programming language functions at many different levels and has many roles, and should be eva
with respect to those levels and roles. Historically, programming languages have had a limited role, t
writing executable programs. As programs have grown in complexity, this role alone has proved ins
cient. Many design and analysis techniques have arisen to support other necessary roles.
Object-oriented techniques help in theanalysis and design phases; object-oriented languages to support
the implementation phase of OO, but in many cases these lack uniformity of concepts, integration wi
development environment and commonality of purpose. Traditional problematic software practices
infiltrating the object-oriented world with little thought. Often these techniques appeal to manageme
because they are outwardly organized: people are assigned organizational roles such as project m
team leader, analyst, designer and programmer. But these techniques are simplistic and insufficien
result in demotivated and uncreative environments.
Object-orientation, however, offers a better rational approach to software development. The comple
tary roles of analysis, design, implementation and project organizationshould be better integrated in
the object-oriented scheme. This results in economical software production, and more creative and
vated environments.
The organization of projects also requiredtools external to the language and compiler, like ‘make.’ A re-
evaluation of these tools shows that often the division of labor between them has not been done alon
mal lines: firstly, programmers need to do extrabookkeepingwork which could be automated; and sec-
ondly, inadequateseparation of concernshas resulted in inflexible software systems.
C++ is an interesting experiment in adapting the advantages of object-orientation to a traditional pr
ming language and development environment. Bjarne Stroustrup should be recognized for having t
insight to put the two technologies together; he ventured into OO not only before solutions were kno
many issues, but before the issues were even widely recognized. He deserves better than a back f
arrows. But in retrospect, we now treat concepts such as multiple inheritance with a good deal of re
and realize that the Unix development environment with limited linker support does not provide eno
compiler support for many of the features that should be in a high level language.(C++ was develop
the mid-eighties supported non-specialized tools found in the Unix program development environm
There are solutions to the problems that C++ uncovered. C++ has gone down a path in research, b
we know what the problems are and how to solve them. Let’s adopt or develop such languages.
Fortunately, such languages have been developed, which are of industrial strength, meant for comm
projects, and are not just academic research projects. It is now up to the industry to adopt them on a
scale.
C++, however, retains the problems of the old order of software production. C++ has an advantage o
as it supports many facets of object-orientation. These can be used for some analysis and design.
cesses of analysis, design, and organization, however, are still largely external to C++. C++ has no
ized the important advantages of integrated software development that leads to improved economie
software production.
Java is an interesting development taking a different approach to C++: strict compatibility with C is not
seen as a relevant goalcontrary to the initial goal of C++ to be as compatible as possible with C. Java
not the only C based alternative to C++ in the object-oriented world. There has also been Objective-C
Brad Cox, and mainly used in NeXT’s OpenStep environment. Objective-C is more like Smalltalk, in
all binding is done dynamically at run time.
A language should not only be evaluated from a technical point of view, considering its syntactic and
semantic features; it should also be analyzed from the viewpoint of its contribution to the entire softw
development process. A language shouldenable communication between project membersacting at
different levels, from management, who set enterprise level policies, to testers, who must test the res
these people are involved in the general activity of programming, so a language should enable comm
tion between project members separated in space and time. A single programmer is not often resp

uct.

pro-
a pro-
tions
to
eploy-

odels

can be
easy

gram.

s
asks.
 reli-

much
urther-

ons of
ges to

chine

but he/
chine

eade

tic.
d is

ation
asks
 to
orta-
g a
for a task over its entire lifetime, let alone responsible for the whole development process and prod
2.1 Programming
Programming and specification are now seen as the same task. One man’s specification is another’s
gram. Eventually you get to the point of processing a specification with a compiler, which generates
gram which actually runs on a computer. Carroll Morgan banishes the distinction between specifica
and programs: “To us they areall programs.” [Morgan 90]. Programming is a term that not only refers
implementation; programming refers to the whole process of analysis, design and implementation, d
ment and maintenance during its life-time until its retirement.
The Eiffel language integrates the concept of specification and programming, rejecting the divided m
of the past in favor of a new integrated approach to projects. Eiffel achieves this in several ways:

it has a clean clear syntax which is easy to read, even by non-programmers;
it has techniques such as preconditions and postconditions so that the semantics of a routine
 clearly documented, these being borrowed from formal specification techniques, but made
 for the ‘rest of us’ to use;
and it has tools to extract the abstract specification from the implementation details of a pro

Thus Eiffel is more than just a language, providing a whole integrated development environment.
Chris Reade [Reade 89] gives the following explanation of programming and languages.

“One, rather narrow, view is that aprogram is a sequence of instructions for a
machine. We hope to show that there is much to be gained from taking the much
broader view that programs are descriptions of values, properties, methods, prob-
lems and solutions. The role of the machine is to speed up the manipulation of
these descriptions to provide solutions to particular problems. Aprogramming
languageis a convention for writing descriptions which can be evaluated.”

[Reade 89] also describes programming as being a “Separation of concerns”. He says:
“The programmer is having to do several things at the same time, namely,

(1) describe what is to be computed;
(2) organize the computation sequencing into small steps;
(3) organize memory management during the computation.”

Reade continues, “Ideally, the programmer should be able to concentrate on the first of the three task
(describing what is to be computed) without being distracted by the other two, more administrative, t
Clearly, administration is important but by separating it from the main task we are likely to get more
able results and we can ease the programming problem by automating much of the administration.
The separation of concerns has other advantages as well. For example, program proving becomes
more feasible when details of sequencing and memory management are absent from the program. F
more, descriptions of what is to be computed should be free of such detailed step-by-step descripti
how to do it if they are to be evaluated with different machine architectures. Sequences of small chan
a data object held ina store may be an inappropriate description of howto compute something when
a highly parallel machine is being used with thousands of processors distributed throughout the ma
and local rather than global storage facilities.
Automating the administrative aspects means that the language implementor has to deal with them,
she has far more opportunity to make use of very different computation mechanisms with different ma
architectures.”
These quotes from Reade are a good summary of the principles from which I criticize C++. What R
calls administrative tasks, I callbookkeeping. Bookkeeping adds to the cost of software production, and
reduces flexibility which in turn adds more to the cost. C and C++ are often criticized for being cryp
The reason is that C concentrates on points 2 and 3, while the description of what is to be compute
obscured.
High level languages describe ‘what’ is to be computed; that is the problem domain. ‘How’ a comput
is achieved is in the low-level machine-oriented deployment domain. Automating the bookkeeping t
enhances correctness, compatibility, portability and efficiency. Bookkeeping tasks arise from having
specify ‘how’ a computation is done. Specifying ‘how’ things are done in one environment hinders p
bility to other platforms. The most significant way high level languages replace bookkeeping is usin

ges
declar-

iler gen-

er will
us in C
vel pro-

high
uiring
velop-
n from
ute is
ara-
 book-

tack,
y allo-
nc-
e
yntac-

er-

 of con-
t possi-

soft-
sider

ne solu-
tion.

 per-
ion of
r lev-

sk. At

s why
 say that
eavor
tu-

fused
nto the
t read or

s to
l have

 quali-
declarative approach, (functional as well as logical programming languages.) whereas low level langua
use operators, which make them more like assemblers. C and C++ provide operators rather than the
ative approach, so are low level. The declarative approach centralizes decisions and lets the comp
erate the underlying machine operators. With the operator approach, the bookkeeping is on the
programmer to use the correct operator to access an entity, and if a decision changes, the programm
have to change all operators, rather than change the single declaration and simply recompiling. Th
and C++ the programmer is often concerned with the access mechanisms to data, whereas high le
gram development and maintenance far more flexible.
While C and C++ syntax is similar to high level language syntax, C and C++ cannot be considered
level, as they do not remove bookkeeping from the programmer that high level languages should, req
the compiler to take care of these details. The low level nature of C and C++ severely impacts the de
ment process. The most important quality of a high level language is to remove bookkeeping burde
the programmer in order to enhance speed of development, maintainability and flexibility. This attrib
more important than object-orientation itself, and should be intrinsic to any modern programming p
digm. C++ more than cancels the benefits of OO by requiring programmers to perform much of the
keeping instead of it being automated.

Specific examples of bookkeeping: where to allocate memory to an entity (registers, s
heap, specific global region); memory allocation management. Specific methods for memor
cation; decisions about functions being inline, low level methods for data sharing among fu
tions, modules, actual files or other program components; checks on legality of current valu
contained by a variable which may contain values outside range expected by programmer; s
tic difference in different constructs which may have same or similar semantics, but the diff
ences are required by the language.
Languages which force a programmer to deal with these issues has broken the separation
cerns. A programmer should only specifies what needs to be computed at the most abstrac
ble way; supporting tools will target the specification to a concrete implementation.

The industry should be moving towards these ideals, which will help in the economic production of
ware, rather than the costly techniques of today (this paper was written starting in ‘90). We should con
what we need, and assess the problems of what we have against that. Object-orientation provides o
tion to these problems. The effectiveness of OO, however, depends on the quality of its implementa
2.2 Communication, abstraction and precision
The primary purpose of any language is communication. A specification is communication from one
son to another entity of a task to be fulfilled. At the lowest level, the task to be fulfilled is the execut
a program by a computer. At the next level it is the compilation of a program by a compiler. At highe
els, specifications communicate to other people what is to be accomplished by the programming ta
the lowest level, instructions must be precisely executed, but there is no understanding; it is purely
mechanical. At higher levels, understanding is important, as human intelligence is involved, which i
enlightened management practices emphasize training rather than forced processes. This is not to
precision is not important; precision at the higher levels is of utmost importance, or the rest of the end
will fail. Most projects fail due to lack of precision in the requirements and other early stages. Unfor
nately, oftenthose who are least skilled in programming work at the higher levels, so specifications lack
the desirable properties of abstraction and precision. Just as in theDilbert Principle [Adams 96], the least
effective programmers are promoted to where they will seemingly do the least damage. This is not quite the
winning strategy that it seems, as that is where they actually do the most damage, as teams of con
programmers are then left to straighten out their specifications, while the so called analysts move o
next project or company to sew the seeds of disaster there. (Indeed, since many managers have no
understood the works of Deming [Deming 82], [L&S 95], De Marco and Lister [DM&L 87], and Tom
Peters’ later works, the message that the physical environment and attitudes of the work place lead
quality has not got through. Perhaps the humor of Scott Adams is now the only way this message wil
impact.)
At higher levels, abstraction facilitates understanding. Abstraction and precision are both important

cision.
-
t.
eld
nda-
s-

com-
ob-

e real
 shows
ms have
 as

project
stems
mated

nts are
sign,

ota-
ntradic-
hile

e

tes to
mming
sis and
ct-ori-
ion can
rmally

ffec-
an-
 from
ad
ournal-

are
ing a
he pro-
mar, so
 impor-
, and
m that
ties of high level specifications. Abstraction does not mean vagueness, nor the abandonment of pre
Abstraction means the removal of irrelevant detail from a certainviewpoint. With an abstract specifica
tion, you areleft with a precise specification; precisely the properties of the system that are relevan
Abstraction is a fundamental concept in computing. Aho and Ullman say “An important part of the fi
[computer science] deals with how to make programming easier and software more reliable. But fu
mentally, computer science is a science ofabstraction-- creating the right model for a problem and devi
ing the appropriate mechanizable techniques to solve it.” [Aho 92].
They also say “Abstraction in the sense we use it often implies simplification, the replacement of a
plex and detailed real-world situation by an understandable model within which we can solve the pr
lem.”
A well known example that exhibits both abstraction and precision is the London Underground map
designed by Harold Beck. This is a diagrammatic map that has abstracted irrelevant details from th
London geography to result in a conveniently sized and more readable map. Yet the map precisely
the underground stations and where passengers can change trains. Many other city transport syste
adopted the principles of Beck’s map. Using this model passengers can easily solve such problems
“How do I get from Knightsbridge to Baker Street?”
2.3 Notation
A programming language should support the ex-change of ideas, intentions, and decisions between
members; it should provide a formal, yet readable, notation to support consistent descriptions of sy
that satisfy the requirements of diverse problems. A language should also provide methods for auto
project tracking. This ensures that modules (classes and functionality) that satisfy project requireme
completed in a timely and economic fashion. A programming language aids reasoning about the de
implementation, extension, correction, and optimization of a system.
During requirements analysis and design phases, formal and semi-formal notations are desirable. N
tions used in analysis, design, and implementation phases should be complementary, rather than co
tory. Currently, analysis, design and modeling notations are too far removed from implementation, w
programming languages are in generaltoo low level. Both designers and programmers must compromis
to fill the gap.
Many current notations provide difficult transition paths between stages. This ‘semantic gap’ contribu
errors and omissions between the requirements, design and implementation phases. Better progra
languages are an implementation extension of the high level notations used for requirements analy
design, which will lead to improved consistency between analysis, design and implementation. Obje
ented techniques emphasize the importance of this, as abstract definition and concrete implementat
be separate, yet provided in the same notation. Programming languages also provide notations to fo
document a system.Program source is the only reliable documentation of a system, so a language
should explicitly support documentation, not just in the form of comments. As with all language, the e
tiveness of communication is dependent upon the skill of the writer. Good program writers require l
guages that support the role of documentation, and that the language notation is perspicuous, (free
obscurity or ambiguity) and easy to learn. Those not trained in the skill of ‘writing’ programs, can re
them to gain understanding of the system. After all, it is not necessary for newspaper readers to be j
ists.
2.4 Tool Integration
A language definition should enable the development of integrated automated tools to support softw
development. For example, browsers, editors and debuggers. The compiler is just another tool, hav
twofold role. Firstly, code generation for the target machine. The role of the machine is to execute t
duced programs. A compiler has to check that a program conforms to the language syntax and gram
it can ‘understand’ the program in order to translate it into an executable form. Secondly, and more
tantly, the compiler should check that the programmers expression of the system is valid, complete
consistent; i.e., perform semantics checks that a program is internally consistent. Generating a syste
has detectable inconsistencies is pointless.
2.5 Correctness

discord
 two
mers;

olerable.
at

r com-

g from
ly too

ately
l incon-
uch to

uce the
a soft-
en
rs in

ide feed-
er, it

are

ncies
Deciding what constitutes an inconsistency and how to detect it often raises passionate debate. The
arises because the detectable inconsistencies do not exactly match real inconsistencies. There are
opposing views: firstly, languages that overcompensate are restrictive, you should trust your program
secondly, that programmers are human and make mistakes and program crashes at run-time are int
This is the key to the following diagrams: we are looking to write programs and tools that support th
development such that we end with a program with no inconsistencies.

In the first figure the black box represents the real inconsistencies, which must be covered by eithe
pile-time checks or run-time checks; that is, those two should help their detection.

In the scenario of this diagram, checks are insufficient so obscure failures occur at run-time, varyin
obscure run-time crashes to strangely wrong results to being lucky and getting away with it. Current
much software development is based on programming until you are in the lucky state, known ashacking.
This sorry situation in the industry must change by the adoption of better languages to remove thead hoc
nature of development.
Some feel that compiler checks are restrictive and that run-time checks are not efficient, so passion
defend this model, as programmers are supposedly trustworthy enough to remove the rest of the rea
sistencies. Although most programmers are conscientious and trustworthy people, this leaves too m
chance. You can produce defect-free software this way, as long as the programmer does not introd
inconsistencies in the first place, but this becomes much more difficult as the size and complexity of
ware system increases, and many programmers become involved. The real inconsistencies are oft
removed by hacking until the program works, with a resultant dependency on testing to find the erro
the first place. Sometimes companies depend on the customers to actually do the testing and prov
back about the problems. While fault reporting is an essential path of communication from the custom
must be regarded as the last and most costly line of defence. C and C++ are in this category. Softw
produced in these languages is prone to obscure failures.

Real Inconsistencies found in program Obscure failures

False alarms found as possible inconsistencies

Superfluous run-time checks/inefficiency unnecessarily done to find inconsiste.

compile-time
checks

run-time
checks

box.
iler has
e, and
some

ional

s.
ficant
rray

 few
ill be
re is

incon-

etection
ately,

s possi-
consis-
The second figure, shows that the language detects inconsistencies beyond the real inconsistency
These are false alarms. The run-time environment also doubles up on inconsistencies that the comp
detected and removed, which results in run-time inefficiency. The language will be seen as restrictiv
the run-time as inefficient. You won’t get any obscure crashes, but the language will get in the way of
useful computations. Pascal is often (somewhat unfairly) criticized for being too restrictive.
The figure below shows an even worse situation, where the compiler generates false alarms on fict
inconsistencies, does superfluous checks at run-time, but fails to detect real inconsistencies.

The best situation would be for a compiler to statically detect all inconsistencies without false alarm
However, it is not possible to statically detect all errors with the current state of technology, as a signi
class of inconsistencies can only be detected at run-time; inconsistencies such as: divide by zero; a
index out of bounds; and a class of type checks that arise during run-time.

The current ideal is to have the detectable and real inconsistency domains exactly coincide, with as
checks left to run-time as possible. This has two advantages: firstly, that your run-time environment w
a lot more likely to work without exceptions, so your software is safer; and secondly, that your softwa
more efficient, as you don’t need so many run-time checks. A good language will correctly classify
sistencies that can be detected at compile time, and those that must be left until run-time.
This analysis shows that as some inconsistencies can only be detected at run-time, and that such d
results in exceptions that exception handling is an exceedingly important part of software. Unfortun
exception handling has not received serious enough attention in most programming languages.
Eiffel has been chosen for comparison in this critique as the language that is as close to the ideal a
ble; that is, all inconsistencies are covered, while false alarms are minimized, and the detectable in
tencies are correctly categorized as compile-time or run-time. Eiffel also pays serious attention to
exception handling.
2.6 Types

run-time checks

compile-time checks

run-time

compile-time

Compile-time checks

Run-time checks

ot suffi-
is must

le, the
ct, but

 that

dynam-
. In
nami-
 there
rs are

drink a
h is to
em is
 type

opera-
st
ort
 can be
d a col-
s type
avail-

:
hy) to

 ele-
 of the
mation
undant

grams

-
ma

s is
st pro-
g to

inters
sms
ted
mmu-

ainst
ustry

nnot
In order to produce correct programs, syntax checks for conformance to a language grammar are n
cient: we should also check semantics. Some semantics can be built into the language, but mostly th
be specified by the programmer about the system being developed (via user-defined types).
Semantics checking is done by ensuring that a specification conforms to some schema. For examp
sentence: “The boy drank the computer and switched on the glass of water” is grammatically corre
nonsense: it does not conform to the mental schema we have ofcomputers andglasses of water. A pro-
gramming language should include techniques for the detection of similar nonsense. The technique
enables detection of the above nonsense is types. We know from the computer’stypethat it does not have
the property ‘drinkable’. Types define an entity’s properties and behavior.
Programming languages can either be typed or untyped; typed languages can be statically typed or
ically typed. Static typing ensures at compile time that only valid operations are applied to an entity
dynamically typed languages, type inconsistencies are not detected until run-time. Smalltalk is a dy
cally typed language, not an untyped language. Eiffel is statically typed. C++ is statically typed, but
are many mechanisms that allow the programmer to render it effectively untyped, which means erro
not detected until a serious failure. Some argue that sometimes you might want to force someone to
computer, so without these facilities, the language is not flexible enough. The correct solution thoug
modify the design, so that now the computer has the property drinkable. Undermining the type syst
not needed, as the type system is where the flexibility should be, not in the ability to undermine the
system.Providing and modifying declarations is declarative programming.
Eiffel tends to be declarative with a simple operational syntax, whereas C++ provides a plethora of
tors. Defining complex types is a central concept of object-oriented programming: “Perhaps the mo
important development [in programming languages] has been the introduction of features that supp
abstract data types (ADTs). These features allow programmers to add new types to languages that
treated as though they were primitive types of the language. The programmer can define a type an
lection of constants, functions, and procedures on the type, while prohibiting any program using thi
from gaining access to the implementation of the type. In particular, access to values of the type is
able only through the provided constants, functions, and procedures.” [Bruce 96].
Object-oriented programming also provides two specific ways to assemble new and complex types
“objects can be combined with other types in expressive and efficient ways (composition and hierarc
define new, more complex types.” [Ege 96].
2.7 Redundancy and Checking
Redundant information is often needed to enable correctness checking. Type definitions define the
ments in a system’s universe, and the properties governing the valid combinations and interactions
elements. Declarations define the entities in a system’s universe. The compiler uses redundant infor
for consistency checking, and strips it away to produce efficient executable systems. Types are red
information. You can program in an entirely typeless language: however, this would be to deny the
progress that has been made in making programming a disciplined craft, that produces correct pro
economically.
It is a misconception that consistency checks are ‘training wheels’ for student programmers, and that ‘syn
tax’ errors are a hindrance to professional programmers. Languages that exploit techniques of sche
checking are often criticized as being restrictive and therefore unusable for real world software. Thi
nonsense and misunderstands the power of these languages. It is an immature conception; the be
grammers realize that programming is difficult. As a whole, the computing profession is still learnin
program.
While C++ is a step in this direction, it is hindered by its C base, importing such mechanisms as po
with which you can undermine the logic of the type system. Java has abandoned these C mechani
where they hinder: “The Java compiler employs stringent compile-time checking so that syntax-rela
errors can be detected early, before a program is deployed in service” [Sun 95]. The programming co
nity has matured in the last few years (or so we hope), and while there was vehement argument ag
such checking in the past by those who saw it as restrictive and disciplinarian, the majority of the ind
now accepts, and even demands it.
Checking has also been criticized from another point of view. This point of view says that checking ca

ecking
d is a
ssary

the
s has
s,

s and

a user
ce. It
pair

ns are
sis-
hecks

rrent
 Such

y will
es
ch edi-

ass cap-

ta and
To put
e what
nes

ion: the
rface
. Like
le, and
 of
such

design
 that is
ould
them,
our
g hid-
t you are
nctions.
s

rovide
les,
guarantee software quality, so why bother? The premise is correct, but the conclusion is wrong. Ch
is neither necessary, nor sufficient to produce quality software. However, it is helpful and useful, an
piece in a complicated jig-saw which should not be ignored. In fact there are few things that are nece
for quality software production. Mainly, software quality is dependent on the skill and dedication of
people involved, not methodologies or techniques. There is nothing that is sufficient. As Fred Brook
pointed out, there is noSilver Bullet[Brooks 95]. Good craftsmen choose the right tools and technique
but the result is dependent onthe skill used in applying the tools. Any tool isworthless in itself. But
theSilver Bulletrationale is not a valid rationale against adopting better programming languages, tool
environments; unfortunately, Brooks’ article has been misused.
Another example of consistency checking comes from the user interface world. Instead of correcting
after an erroneous action, a good user interface will not offer the action as a possibility in the first pla
is cheaper to avoid error than to fix it. Most people drive their cars with this principle in mind: smash re
is time consuming and expensive. Program development is a dynamic process; program descriptio
constantly modified during development. Modifications often lead to inconsistencies and error. Con
tency checks help prevent such ‘bugs’, which can ‘creep’ into a previously working system. These c
help verify that as a program is modified, previous decisions and work are not invalidated.
It is interesting to consider how much checking could be integrated in an editor. The focus of many cu
generation editors is text. What happens if we change this focus from text to program components?
editors might check not only syntax, but semantics. Signalling potential errors earlier and interactivel
shorten development times, alerting programmers to problems, rather than wasting hours on chang
which later have to be undone. Future languages should be defined very cleanly in order to enable su
tor technology.
2.8 Encapsulation
There is much confusion about encapsulation, mostly arising from C++ equating encapsulation withdata
hiding. The Macquarie dictionary defines the verbto encapsulateas “to enclose in or as in a capsule.” The
object-oriented meaning of encapsulation is to enclose related data, routines and definitions in a cl
sule. This does not necessarily mean hiding.
Implementation hiding is an orthogonal concept which is possible because of encapsulation. Both da
routines in a class are classified according to their role in the class as interface or implementation.
this another way: first you encapsulate information and operations together in a class, then you decid
is visible, and what is hidden because it is implementation detail. Most often only the interface routi
and data should appear at design time, the implementation details appearing later.
Encapsulation provides the means to separate the abstract interface of a class from its implementat
interface is the visible surface of the capsule; the implementation is hidden in the capsule. The inte
describes the essential characteristics of objects of the class which are visible to the exterior world
routines, data in a class can also be divided into characteristic interface data which should be visib
implementation data which should be hidden. Interface data are any characteristics which might be
interest to the outside world. For example when buying a car, the purchaser might want to know data
as the engine capacity and horse-power, etc. However, the fact that it took John Engineer six days to
the engine block is of no interest. Implementation hiding means that data can only be manipulated,
updated, within the class, but it does not mean hiding interface data. If the data were hidden, you c
never read it, in which case, classes would perform no useful function as you could only put data into
but never get information out. In order to provide implementation hiding in C++ you should access y
data through C functions. This is known as data hiding in C++. It is not the data that is actually bein
den, but the access mechanism to the data. The access mechanism is the implementation detail tha
hiding. C++ has visible differences between the access mechanisms of constants, variables and fu
There is even a typographic convention of upper case constant names, which makes the difference
between constants and variables visible.Java has these idiosyncrasies as well.
The fact that an item is implemented as a constant should also be hidden. Most non-C languages p
uniform functional access to constants, variables and value returning routines. In the case of variab

 is that

func-
the
is
ther than

These
y con-
ed

ce
tic. The

on the
ns,

 to oth-
ningful
nguage
s, and it
 reason

iga-
 by pro-

ing
ments
nt and

eed to
ntation
ent

into a
a sys-
t parts
ers

 in a
 an

nt
inds
e this
. Pro-
d from

C++
functional access means they can be read from the outside, but not updated. An important principle
updates are centralized within the class.
Above I indicated that encapsulation was grouping operations and information together. Where do
tions fit into this? The wrong answer is that functions are operations. Functions are actually part of
information, as a function returns information derived from an object’s data to the outside world. Th
theme and its adverse consequences, that place the burden of encapsulation on the programmer ra
being transparent, recur throughout this critique.
2.9 Safety and Courtesy Concerns
This critique makes two general types of criticism about ‘safety’ concerns and ‘courtesy’ concerns.
themes recur throughout this critique, as C and C++ have flaws that often compromise them. Safet
cerns affect theexternalperception of the quality of the program; failure to meet them results in unfulfill
requirements, unsatisfied customers and program failures.
Courtesy concerns affect theinternalview of the quality of a program in the development and maintenan
process. Courtesy concerns are usually stylistic and syntactic, whereas safety concerns are seman
two often go together. It is a courtesyconcern for an airline to keep its fleet clean and wellmaintained,
which is also very much a safety concern.
Courtesy issues are even more important in the context of reusable software. Reusability depends
clear communication of the purpose of a module. Courtesy is important to establish social interactio
such as communication. Courtesy implies inconvenience to the provider, but provides convenience
ers. Courtesy issues include choosing meaningful identifiers, consistent layout and typography, mea
and non-redundant commentary, etc. Courtesy issues are more than just a style consideration: a la
design should directly support courtesy issues. A language, however, cannot enforce courtesy issue
is often pointed out that poor, discourteous programs can be written in any language. But this is no
for being careless about the languages that we develop and choose for software development.
Programmers fulfilling courtesy and safety concerns provide a high quality service fulfilling their obl
tions by providing benefits to other programmers who must read, reuse and maintain the code; and
ducing programs that delight the end-user.
Theprogramming by contractmodel has been advocated in the last few years as a model for programm
by which safety and courtesy concerns can be formally documented. Programming by contract docu
the obligations of a client and the benefits to a provider in preconditions; and the benefits to the clie
obligations of the provider in postconditions [Meyer 88], [Kilov and Ross 94].
2.10 Implementation and Deployment Concerns
Class implementors are concerned with the implementation of the class. Clients of the class only n
know as much information about the class as is documented in the abstract interface. The impleme
is otherwise hidden. Another aspect that is just as important to shield programmers from is deploym
concerns.
Deployment is how a system is installed on the underlying technology. If deployment issues are built
program, then the program lacks portability, and flexibility. One kind of deployment concern is how
tem is mapped to the available computing resources. For example, in a distributed system, this is wha
of the system are run in which location. As things can move around a distributed system, programm
should not build into their code location knowledge of other entities. Locations should be looked up
directory. Another deployment issue is how individual units of a system are plugged together to form
integrated whole. This is particularly important in OO, where several libraries can come from differe
vendors, but their combination results in conflicts. A solution to this is some kind of language that b
the units. Thus if you purchase two OO libraries, and they have clashes of any kind, you can resolv
deployment issue without having to change the libraries, which you might not be able to do anyway
grammers should not only be separated from implementation concerns of other units, but separate
deployment concerns as well.
2.11 Concluding Remarks
It is relevant to ask if grafting OO concepts onto a conventional language (like Objective-C onto C,

? The
s, the
 old
 goes

ell can
rience

 old

ed sys-
s and
onto C, Ada-95 onto Ada-83, and to a large extend like Java onto C) releases the full benefits of OO
following parable seems apt: “No one sews a patch of unshrunk cloth on to an old garment; if he doe
patch tears away from it, the new from the old, and leaves a bigger hole. No one puts new wine into
wineskins; if he does, the wine will burst the skins, and then wine and skins are both lost. New wine
into fresh skins.”Mark 2:22
We must abandon disorganized and error-prone practices, not adapt them to new contexts. How w
hybrid languages support the sophisticated requirements of modern software production? In my expe
bolt-onapproaches to object-orientation usually end in disaster, with the new tearing away from the
leaving a bigger hole.
Surely a basic premise of object-oriented programming is to enable the development of sophisticat
tems through the adoption of the simplest techniques possible? Software development technologie
methodologies should not impede the production of such sophisticated systems.

