Stream i/o

Data streams

An application may have access to seveath streamsA data stream is essentially nothing more
than a sequence of bytes. If the stream is a source of data for the application,irpsiestream

The applicatiorreadsdata from an input stream, removing it from the stream. If it is a destination
for data from the application (or “sink”), it is autput streamThe applicationwrites data to an
output stream, appending it to the stream.

input streams output streams
..bbbbbbbbb... > ..bbbbbbbbb... >
Application
..bbbbbbbbb... > ..bbbbbbbbb... >

The actual source of the data in an input stream might be a user’s keyboard, a file, another pro-
gram, a network connection, an external device, etc. Likewise, the destination of an output stream
could be a terminal window, a file, another program, a network connection, and so on. In this doc-
ument, we consider streams associated with files, the keyboard, and a terminal window. Note,
though, that the actual source or sink of a data stream generally does not matter to an application.

A data stream can be finite — for instance, if the source of an input stream is a file — or conceptu-
ally unbounded — for instance, if the source of an input stream is a sensor that reports temperature
every ten seconds. An application generally has a way of determining that an input stream is
exhausted, that all the data has been read and no more data will appear in the stream, and a way of
indicating that an output stream is complete, that no more data will be written to the stream.

The bytes that comprise a data stream can be interpreted in many ways. If they are to be inter-
preted as characters, the stream is usually referreddioeaiacter streamOtherwise, the stream is
abinary streamFor example, if the source of an input stream is a text file, the stream is a charac-
ter stream. If the source is a file in which each group of four bytes is a two’s complement binary
integer, the stream is a binary stream.

We need to be a little careful with our terminology in regard to Java. Specifically, Java represents
characters with the 16-bit Unicode character set. In Java, thehanacter streamefers to a

data stream whose elements are to be interpreted as Unicode characters. Any other data stream —
even one whose elements are ordinary 8-bit ASCII charactersbyie atream

OO0J library classes

In this section, we review the OOJ i/o library, available at
http://www.cs.uno.edu/~fred/OOJ/Utilities/Libraries/ . The standard
packaggava.io is considered in the next section. If you are not interested in this library, you
may skip this section.

The packaggava.io s rather formidable, and not easily digestible. The package

OO0J.basiclO includes very basic classes for using simple data streams. It is based on a version
of Bertrand Meyer’s libraries for the programming langu&iféel. Some programmers staunchly
oppose using libraries that are not either standard or home grown. Considering the amount of ven-
dor and third-party software we trust, this seems to us a little narrow minded. After all, a major
thrust of the paradigm is producing reusable software and building on the work of others.

The fundamental classes@0J.basiclO areBasicFileReader and

BasicFileWriter . A BasicFileReader instance is associated with an input stream, and
aBasicFileWriter instance is associated with an output stream. The data streams are
assumed to contain characters represented with the default system encoding, typically ASCII.

BasicFileReader

BasicFileReader has two constructors. The first requires that the name of an input file be
provided as &tring argument:

public BasicFileReader (String fileName)
Create an input stream for the named file.

Exactly what constitutes a legal file name is system dependent. The file must exist, be accessible
to the process, and should be a standard (ASCII) text file. Invoking the constructor creates an
input stream whose source is the file. Reading from the stream is simply reading from the file. For
example, iffred.txt is a text file,

BasicFileReader input = new BasicFileReader("fred.txt");
will create an object that reads the filed.txt

The second constructor requires no arguments, and creates a input stream associated with “stan-
dard input.”

public BasicFileReader ()
Create an input stream for standard input.

The source of standard input is determined by the operating system when the application is run.
Typically standard input comes from the keyboard.

Reading from an input stream

Once aBasicFileReader has been created for a stream, we can use its methods to read the
data in the stream. There are five commands for reading one or more bytes from the stream, and
four queries for determining what was read. A read command is typically followed by a query.

The commands are:

public void readChar ()
Read a new character from this input stream.

public void readint ()
Read a new integer from this input stream.

public void readDouble ()

Read a new double from this input stream.

public void readLine ()
Read the rest of the line from this input stream.

public void readWord ()
Read a new word from this input.

The queries are:

public char lastChar ()
Character most recently read t@adChar .

public int lastint ()
int most recently read gadint

public double lastDouble ()
double most recently read lngadDouble

public String lastString ()
String most recently read lngadWord orreadLine

There is also a query for determining whether or not the stream is exhausted:

public boolean eof ()
End of input stream has been reached.

For example, suppose that the first three lines of thdriie. txt contain the following, where
“e 7 represents a space ard’‘represents the “newline” character at the end of the line:

*Hello [
estestinge O
ee123xyzee [

and that 8asicFileReader is created to read from the file:
BasicFileReader input = new BasicFileReader("fred.txt");

Executing the command
input.readChar();

will cause the first character of the file (a space) to be read. The statement
char ¢ = input.lastChar();

will assign the character to the variableExecutingceadChar again will cause the next char-
acter (the H’) to be read, and so on.

The following loop will read characters skipping spaces, and assgythecharacter following
the spaces:

input.readChar();
while (input.lastChar() =="")
input.readChar();

¢ = input.lastChar();

If the second line of file described above were being read, the charaétentld be assigned to
C.

The methodeadint skips any “white space” at the beginning of the input stream. “White
space” is any sequence of spaces, tabs, end of Bbe@J he characters following the white space
must denote an optionally-signed decimal integer. The method reads these characters, and the
integer value denoted can be obtained with the dastint . For example, if the third line of

the file described above were being read, the statement

input.readint();

would read characters up to (but not including) tkie The statement
int i = input.lastint();

would assign the value 123 to the variable

The methodeadDouble is similar, but requires that the characters following the white space
have the form of an optionally signed double literal.

The methodeadWord reads the next word in the input stream, where a “word” is defined to be
a sequence of non white space characters. The meglaoidline reads the remainder of the cur-
rent line.

Suppose, for example, the filed.txt contains five lines:

*Hello O
estestinge O
ee123xyzee [
O

+3e+4abce [

We show the input stream after each command, and what the relevant query returns.

\\ \‘ZJQ
\\'&Q '\\Qq \Q O\SQ
O & NIZS
command input stream & & &
*Hello O ? ? ? 7
estestinge [
e0123xyzes [
0
+3e+4abce [
input.readChar();
Hello O H ? ? |7
esstestinge N
ee123xyzes [J
O "testing”
*+3e+4abce [123 |3e4
input.readChar();
ello O Lal ? 207
estestinge [
ee123xyzee [J
0
+3e+4abce [
input.readLine();
sstestinge O|'H "ello” ?) ?)
ee123xyzes [J
W
+3e+4abce [
input.readWord();
o['H' | "testing” ??
e0123xyzee [
0
«+3e+4abce [
input.readint();
Xyzee ['H' "testing" 1232
0
+3e+4abce [
input.readLine();
0 'H' "xyz " 1237
«+3e+4abce [
input.readDouble();
abce 0 H’ "xyz " 123e4

The queryeof (“end of file”) can be used to determine when the input stream is exhausted. For
instance, the following method counts the number of lines int he named file.

/**

* The number of lines in the specified file.
*/
public int lineCount (String fileName) {
BasicFileReader input = new BasicFileReader(fileName);
int count = 0O;
while (linput.eof()) {
input.readLine();
count = count + 1;

}

return count;

}

Suppose each line of a file contains space separated integer student number, integer test score, and
student name. For example, a line might look like this:

96669 66 Back, Helen

The following method reads the file, and produces a list of test scores.
/**

* Test scores from Student data.
* require:
* each line of the named file must have the format:
* integer integerTestScore unspecified
*/
public IntegerList scores (String fileName) {
BasicFileReader input = new BasicFileReader(fileName);
IntegerList scores = new IntegerList();
while (linput.eof()) {
input.readint(); // skip 1st int on line
input.readint();
scores.append(new Integer(input.lastint()));
input.readLine();

}

return scores;

}

BasicFileWriter

BasicFileWriter also has two constructors, one requiring a file name as argument and the
other creating a stream to standard output.

public BasicFileWriter (String fleName)
Create an output stream for the named file.

public BasicFileWriter ()
Create an output stream for standard output.

If the file specified in the first constructor does not exist, it will be created. If it exists, it will be
overwritten. As with standard input, the source of standard output is determined by the operating
system when the application is run. Typically standard output goes to a terminal window.

The commands write standard text (typically ASCII characters) to the stream. There are two ver-
sions of each output command, one that appends a “newline” character and one that doesn't.

public void display (char ch)
Write the specifiegdhar to the output stream.

public void display (int value)
Write a decimal representation of the specified to the output stream.

public void display (double value)
Write a decimal representation of the specitledble to the output stream.

public void display (Object obj)
Write aString representation of the specifi@iject to the output stream.

public void display (String st)
Write the specifie®tring to the output stream.

public void displayLine (char ch)
Write the specifiedhar to the output stream, followed by a line separator.

public void displayLine (int value)
Write a decimal representation of the specified to the output stream, followed by
a line separator.

public void displayLine (double value)
Write a decimal representation of the specifiedible to the output stream, followed
by a line separator.

public void displayLine (Object obj)
Write aString representation of the specifi@iject to the output stream, fol-
lowed by a line separator.

public void displayLine (String st)
Write the specifie®tring to the output stream, followed by a line separator.

Utility methods are provided for writing blank lines, flushing the output buffer, and closing the
stream:

public void blankLine (int n)
Write the specified number of blank lines to the output stream.

public void flush ()
Flush the output buffer: write any buffered data to the output

public void close ()
Close the output stream.

Output is typically buffered in memory until a line is completed. For instancatptit is a
BasicFileWriter :

basicFileWriter output = new basicFileWriter();
executing the command
output.display("Hello");

will not send the characters to the output stream immediately. The characters will be stored in a
memory buffer until a complete line can be written. If the next command is

output.displayLine(" World!");
the eleven charactersiéllo World " followed by a newline will be sent to the output stream.

Sometimes you would like to characters to be displayed immediately without a newline. For
instance, if you are trying to prompt the user for input, you might want the characters

Please enter the file name:

to be written in the user’s window, with the cursor remaining at the end of the line. The command
flush causes any buffered output to be written to the output stream. So the pair of commands

output.display("Please enter the file name: ");
output.flush();

displays the string immediately without waiting for a line-ending newline.
The commandalose also flushes the buffer, and closes the output stream.
Exceptions

The package OQdasiclO defines three exceptiori3ataException , EOFException
andIOException . These are all unchecked exceptioRsifiTimeExceptions), so you can
ignore them if you wish.

A DataException is thrown byreadint orreadDouble if the characters in the input
stream don’t have the appropriate format. For instanceadint is invoked and the next non-
blank character in the input stream is a letter, thBataException is thrown.

Catching a DataException can be used to direct a “retry” in an interactive input method. For
instance, suppose we want the user to enter an integer temperature value. We might write

int temp;

output.display("Enter temperature, as an integer: ");
output.flush();

input.readint();

temp = input.lastint();

If the user enters something besides a legal integer, we might want to give him another chance.
We catch théataException , and try again.

int temp;
boolean needTemp = true;
while (needTemp) {
try {
output.display("Enter temperature, as an integer: ");
output.flush();
input.readint();
temp = input.lastint();
needTemp = false;
} catch (DataException e) {
output.displayLine("Please enter an integer!");
}

}

When the invocation akadIint succeeds, we seeedTemp tofalse , and are done. If it
fails because the user has not entered a legal integer, we catch the exception, write out an informa-
tional message and try again.

The exceptioreOFException is thrown by a read method if there are no more characters in the
input stream, or not enough characters to satisfy the read request. For instance, if readint is
invoked and only characters remaining in the input stream are white space characters, the method
will read past the white space and then throie@#Exception

Any other problem with reading or writing results inl@&Exception being thrown.

Standard java.io library classes

The standard packaggva.io is a menagerie containing, at last count, ten interfaces, fifty
classes, and sixteen exceptions. The functionality can be categorized as

» facilities for reading and writing data streams;
» facilities for manipulating files;
» facilities for serializing objects.

File manipulation facilities include the clasge , which models a file in the local file system,

and the clasRandomAccessFile , which provides mechanisms for reading and writing a file

in a non-sequential manner. Object serialization provides a means for writing objects to a byte
stream, and later recreating the objects from the byte stream. We will not consider these facilities
in this document.

The classes that support reading and writing from data streams can be organized into four catego-
ries:

» classes for reading byte streams;

» classes for writing byte streams;

» classes for reading character streams;
» classes for writing character streams.

Recall that a Java character stream is a data stream whose elements are 16-bit Unicode characters.
Any other data stream is a byte stream. The character stream classes were developed after the byte
stream classes. So although there are similarities, byte stream and character stream classes are not
entirely symmetric.

Each category has an abstract class at the top of its hierarpbtStream andOutput-

Stream for byte streams, arifleader andWriter for character streams. Other classes in the
hierarchies extend the functionality of the base classes in two ways: some add functionality by
extending the base classes; others add functionality by wrapping an instance of another class. The
benefits of composition (wrapping) are explained in [NH 15]. Principally, composition allows the
extended functionality to be applied dynamically, at run-time. We consider some of the central
classes in each category.

Input byte streams

Abstract clas$nputStream

The top of the hierarchy is the abstract clagsitStream . Fundamental methods for reading
the stream are specified in this class, including:

public abstract int read () throws IOException
Read and return the next byte of data from the input stream. Return -1 if the end of the
stream is encountered (the stream is exhausted).

ensure:
0 <= this.read() <= 255 || this.read() == -1

Note that this method is neither a proper command nor a proper query. It changes the state of the
stream and returns a value. Most of jinea.io input methods are of this flavor.

The methodead returns the byte value as a non-negative. For instance, if the next byte in
the stream is the ASCII character ‘A, the integer value 65 will be returned: the character ‘A’ is
denoted by the eight bits 01000001 in ASCII, and 01000001 is the binary representation of 65.

If no data is available but the end of the stream has not been seen, the method waits for more data
to appear. For instance, if the data source is the keyboard, and all the data previously keyed by the
user has been read, the metmedd blocks until the user keys another line. (How the user closes

an input stream whose source is the keyboard depends on the operating systenCéteying

trol-D on aline by itself is typical.)

If the next byte cannot be read (for a reason other than the end of the stream being encountered),
the method throws gava.io.IOException . This is a checked exception: the method invok-
ingread must either catch the exception or includbraws clause indicating that it might

also throw the exception.

Recall that the primitive Java typlar is a numeric type. &har value is automatically

extended to amt when necessary, and art value can be explicitly converted (by casting) to
achar . Furthermore, the 16-bit Unicode representation of a standard ASCII character is the 8-bit
ASCII character with high-order 0’s added. For example, the Unicode representation of the Latin
‘A’ is the 16-bits 00000000 01000001. Considered as a binary integer, this is alsargiutlf is

anlnputStream containing ASCII characters (from the keyboard, for instance), we can safely
convert the ASCII characters to values of tgpar :

int i = input.read();
if (i 1=-1)
char ¢ = (char)i;

Two additionaread methods are specified in the clagsutStream . These both require a
byte array as argument, and store data into the array. For instance,

public int read (byte[] b) throws IOException
Read some number of bytes from the input stream and store them into thé afiay
number of bytes actually read is returned as an integer. This method blocks until input
data is available, end of file is detected, or an exception is thrown.

If no byte is available because the stream is at end of file, the value -1 is returned; oth-
erwise, at least one byte is read and storedinfbhe number of bytes read is, at most,
equal to the length dd.

If the first byte cannot be read for any reason other than end of file, the&an
ception is thrown. In particular, alfDException is thrown if the input stream
has been closed.

Other methods specified include

public void close () throws IOException
Close the input stream and release associated resources.

public long skip (long n) throws IOException
Skip over and discana bytes of data from this input stream. The actual number of
bytes skipped is returned.rifis negative, no bytes are skipped.

For details of these and other methods, see the library specifications at
http://java.sun.com

ClassFilelnputStream

FilelInputStream is a straightforward concrete extensionrgfutStream

InputStream

FileInputStream

FilelInputStream specifies a file as the source of the input stream, but otherwise adds no
functionality to that specified bihputStream . A FilelnputStream is generally wrapped

with aDatalnputStream , BufferedinputStream , orInputStreamReader to pro-
vide a richer interface. We postpone examples until we consider these classes.

The file is identified — either with&tring file name, &ile object, or a system-specific file
descriptor — in th&ilelnputStream constructor. The file is implicitly opened when the
FilelInputStream instance is created. The constructors are:

public FilelnputStream (String name)
throws FileNotFoundException, SecurityException

public FilelnputStream (File file)
throws FileNotFoundException, SecurityException

public FilelnputStream (FileDescriptor fd)
throws SecurityException

The exceptioava.io.FileNotFoundException is a checked exception;
java.lang.SecurityException is unchecked.

ClassFilterInputStream

FilterInputStream provides no additional functionality, but serves as a base class for
InputStream wrappers.

InputStream

: wraps
FilterlnputStream - A1aps |

Note thatFilterinputStream is also s subclass bfputStream . This allows oné-il-
terlnputStream to wrap anotheFilterinputStream

Two commonly used subclassedHdferinputStream areDatalnputStream and
BufferedInputStream

FilterInputStream

1

DatalnputStream BufferedinputStream

DatalnputStream provides methods for reading values of primitive Java data types from the
input stream. Included are the following:

public boolean readBoolean () throws IOException
Read one byte and retumue if the byte is non-zerdalse if the byte is zero.

public char readChar () throws IOException
Read two bytes and return the value as a Unicode character.

public double readDouble () throws IOException
Read eight bytes and return the value deuble .

public int readint () throws IOException
Read four bytes and return the value aman.

public byte readByte () throws IOException
Read and return one input byte. The byte is treated as a signed value in the range -128
through 127, inclusive.

Note that these methods dotread character representation of the values, but binary representa-
tions. You would not use these methods to read an ASCII file for instance. They throw a

java.io.EOFException if the end of the input stream is encountered during the read
attempt. java.io.EOFException is a subclass gava.io.|IOException)
A BufferedInputStream uses an in-memory buffer to store input from the stream. Thatis, a

large number of bytes are read from the input stream and stored in an internal buffer. Bytes are
then read directly from the internal buffer. When the buffer is exhausted, it is filled again with
another chunk of data form the input stream. Of course, the operating system also buffers input
data in memory if possible. UsinggufferedInputStream , however, reduces the number of

calls to the operating system. The operating system need only be accessed occasionally to fill the
buffer.

As we've said, these subclasses-ierinputStream wrap aninputStream . The
InputStream component is provided as a constructor argument:

public DatalnputStream (InputStream in)
Create @atalnputStream that reads from the givénputStream

public BufferedinputStream (InputStream in)
Create &BufferedinputStream that buffers input from the given
InputStream in a buffer with the default size of 2048 bytes.

To see how this works, suppose theffibése.dat contains a sequence of 32-bit (four byte)
integer values. The file can be opened and wrapped \WitltanputStream as

FilelInputStream in = new FilelnputStream("noise.dat");
DatalnputStream data = new DatalnputStream(in);

or simply as

DatalnputStream data =
new DatalnputStream(new FilelnputStream("noise.dat"));

The integer values can be read by usingth@lnputStream methodreadint
inti;
try {
while (true) {

i = data.readint();
process(i);

} catch (EOFException e) {
data.close();
}

Using an exception to detect the expected end of input condition is annoying.

We mentioned that sindélterinputStream is a subclass dhputStream , oneFil-
terinputStream can wrap another. If we wanted to buffer input from the above file, we could
first wrap theFilelnputStream in BufferedinputStream

FilelInputStream in = new FilelnputStream("noise.dat");
BufferedinputStream bf = new BufferedInputStream(in);
DatalnputStream data = new DatalnputStream(bf);

Of course, there is really no need to name all these instances. We could just as easily write:

DatalnputStream data =
new DatalnputStream(
new BufferedInputStream(
new FilelnputStream("noise.dat")));

Input character streams

Abstract clasReader

The top level of the input character stream hierarchy is the abstradreladsr . Reader is
similar in purpose and structure flmputStream , butReader reads a stream of Unicode char-
acters rather than bytes. Its bagad method is specified as follows:

public int read () throws IOException
Read and return the next character of data from the input stream. The character is

returned as an integer in the range 0 to 65535 (8%a4)2 Returns -1 if the end of the
stream is encountered (the stream is exhausted).

ensure:
0 <= this.read() <= 65535 || this.read() == -1

Note that the method returns a value of type , not of typechar . (Why? So that there is a con-
venient “non-character” value that can be returned if the end of the stream has been reached.) The
postcondition guarantees that thé can be safely cast tochar . If reader is aReader ,we

can write

int i = reader.read();

if (il=-1)
char ¢ = (char)i;

ClassBufferedReader

BufferedReader is used to buffer character stream input in much the same way that

BufferedinputStream is used to buffer byte stream input.
Reader
wraps
BufferedReader

BufferedReader has a handy method for reading a line of input:

public String readLine () throws IOException
Read and return a line of text. Retmull if the end of the stream is encountered.
Line terminating characters are not included inShéng

ClasslnputStreamReader

InputStreamReader is an adapter class that wrapd@putStream and provides the
functionality of aReader .

Reader

wraps
InputStreamReader >—= InputStream

ThelnputStreamReader converts each byte of theputStream to a Unicode character
using an encoding scheme that can be specified whémpitStreamReader is created. If
no encoding scheme is specified, a system default is used.

public InputStreamReader (InputStream in)
Create annputStreamReader that reads from the givénputStream and
translates bytes to characters using the system default encoding.

public InputStreamReader (InputStream in, String enc)
throws UnsupportedEncodingException

Create annputStreamReader that reads from the givdnputStream and
translates bytes to characters using the specified encoding.

A typical default encoding is 1ISO-8859-1 (Latin 1). This is an 8-bit character set that covers most
Western European languages. The first 128 characters (characters 0 to 127) are identical to ASCII.

To explicitly specify this encoding, give the strin08859 1 " as the second argument to the
constructor.

ClassFileReader

FileReader extenddnputStreamReader . In effect, aFileReader is an

InputStreamReader using the system default encoding and wrapped around a
FilelnputStream

Reader

wraps
InputStreamReader >—= InputStream

wraps
FileReader <>——= FilelnputStream

The constructors are similar to thosd=géInputStream

public FileReader (String name)
throws FileNotFoundException, SecurityException

public FileReader (File file)
throws FileNotFoundException, SecurityException

public FileReader (FileDescriptor fd)
throws SecurityException

Examples

A line-by-line reader

First, let's write a simple method that takes the name of a text file as argument, counts the number
of liens in the file, and returns the count. We will usertfaglLine method oBuffered-
Reader to read each line of input.

/**

* The number of lines in the specified file.

* require:
* the specified file must be a text file.
*/

int lineCount (String fileName) throws IOException {
BufferedReader input =
new BufferedReader(new FileReader(fileName));
int count = 0;
while (input.readLine() '= null)
count = count + 1;
input.close();
return count;

}

Creating the~ileReader creates &ilelnputStream for reading the file and opens the
file. TheFileReader is passed to thBufferedReader constructor. Th8uffered-
Reader wraps theFileReader , providing thereadLine functionality.

Two characteby-character readers

As a second example, let’s write a method that counts the number of spaces in a text file. Again,
we use BufferedReader , and read characters one at a time.
/**
* The number of spaces in the specified file.
* require:
* the specified file must be a text file.
*/
int spaceCount (String fileName) throws IOException {
BufferedReader input =
new BufferedReader(new FileReader(fileName));
int count = 0O;
int ch = input.read();
while (ch !=-1) {
if (ch=="")
count = count + 1;
ch = input.read();
}
input.close();
return count;

}

Next, suppose we want a method that counts the number of words in a file, where a word is any
sequence of non white space characters. Words are separated by white space. (Recall that “white
space” is composed of spaces, tabs, end of lieteg, TheReader classes only provide methods

for reading a file character by character or line by line. Our approach is to read the file character
by character and check for white space. The standardGifesacter has a useful method:

public static boolean isWhitespace (char ch)

Determine if the specified character is white space.

Using this method, we can write:
/**

* The number of words in the specified file.
* require:
* the specified file must be a text file.
*/
int wordCount (String fileName) throws IOException {
BufferedReader input =
new BufferedReader(new FileReader(fleName));
int count = O;
int ch = input.read();
while (ch !=-1) {
if (Character.isWhitespace((char)ch))
do // skip white space
ch = input.read();
while (ch I= -1 && Character.isWhitespace((char)ch));
else {
count = count + 1;
do // skip rest of word
ch = input.read();
while (ch I= -1 && !Character.isWhitespace((char)ch));
}
}
input.close();
return count;

}

The first character in a word or sequence of white space is identified, and the remaining characters
in the word of white space are skipped.

Using a tokenizer

The clasgava.util.StringTokenizer can be useful for a problem like the previous. A
StringTokenizer is given &String as argument when it is created, and breaks the string

into a sequence of “tokens” separated by “delimiters.” A token is simply a sequence of characters.
A delimiter is a character that separates tokens. The delimiter characters can be specified when the
StringTokenizer is created. Two constructors are:

public StringTokenizer (String str, String delim)
Construct a string tokenizer for the specified string. The characters detime argu-
ment are the delimiters for separating tokens.

public StringTokenizer (String str)
Construct a string tokenizer for the specified string. The tokenizer uses the default
delimiter set, which is: the space character, the tab character, the newline character, the
carriage-return character, and the form-feed character.

Functions provided by thetringTokenizer include:

public boolean hasMoreTokens ()
There are more tokens available from this tokenizer’s string.

public String nextToken ()
The next token from this string tokenizer.

require:
this.hasMoreTokens()

In out case, the default set of white space delimiters is adequate. using a tokenizer, we can imple-
ment the method as follows:

int wordCount (String fileName) throws IOException {
BufferedReader input =
new BufferedReader(new FileReader(fileName));
int count = 0;
String line = input.readLine();
while (line = null) {
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
tokenizer.nextToken();
count = count+1;
}
line = input.readLine();
}
input.close();
return count;

}

Note that the token returned bgxtToken is ignored.

As a final example, suppose each line of a file contains space separated integer student number,
integer test score, and student name. For example, a line might look like this:

96669 66 Back, Helen

We write a method that reads the file and produces a test average (mean). Again, we’ll use a
BufferedReader and aStringTokenizer

But we must convert the second token of each line into an integer value. To do this, we use the
methodparselnt from the standard classteger . This method is specified as

public static int parselnt (String s)
throws NumberFormatException
Parse the string argument as a signed decimal integer. The characters in the string must
all be decimal digits, except that the first character may be an ASCII minus-sSigm *
indicate a negative value. The resulting integer value is returned. TRowser-
FormatException if the string does not contain a parsable integer.

/**

* Average of test scores from Student data.

* require:

* each line of the named file must have the format:
* integer integerTestScore unspecified

*/

public double average (String fileName) throws
IOException, NumberFormatException {
BufferedReader input =
new BufferedReader(new FileReader(fileName));
int count = 0;
int total = O;
String line = input.readLine();
while (line = null) {
StringTokenizer tokenizer = new StringTokenizer(line);
tokenizer.nextToken(); // skip first token on line
int grade = Integer.parselnt(tokenizer.nextToken());
total = total + grade;
count = count + 1;
line = input.readLine();
}
input.close();
return (double)total/(double)count;

}

The clasgava.io.StreamTokenizer can also be helpful in parsing input text. We do not
consider that class here.

Output byte streams

The collection of output stream classes mirrors the input classes. At the top of the output byte
stream hierarchy is the abstract cl@sgputStream . Fundamental methods are:

public abstract void write (int b) throws IOException
Write the specified byte (low order 8 bits of the provided) to the output stream.

public void close () throws IOException
Close the output stream and release any associated resources.

public void flush () throws IOException
Write any buffered bytes to the output stream.

FileOutputStream extendQutputStream by allowing a file to be specified as the desti-
nation of the output in much the same way fikginputStream extenddnputStream

FilterOutputStream provides a base class OutputStream wrappers, again in a way
similar to its input counterparilterinputStream . BufferedOutputStream and
DataOutputStream extendFilterOutputStream , and provide functionality symmetric
to their input stream counterparts. (The cRsstStream also extend&ilterOutput-

Stream . However PrintWriter , discussed below, should be used instede¥iot-
Stream .) Details on these classes can be obtained from the standard documentation. We do not
consider them further.

Output character streams

ClassWriter

The abstract clad#&/riter is at the top of the output character stream hierarchy. It is similar in
functionality toOutputStream , butitswrite method writes a Unicode character rather than a
byte.

public abstract void write (int c) throws IOException
Write a character consisting of the low order 16 bits ofitite provided to the output
stream.

ClassBufferedWriter

The wrapper clasBufferedWriter extendsNriter , and is symmetric to thReader class
BufferedReader

Writer

f

BufferedWriter

wraps

BufferedWriter constructors require thaMdriter be provided as argument.

A BufferedWriter writes characters to a memory buffer rather than directly to the output
stream. The buffer is emptied to the output stream as needed. The class defines methods for
explicitly emptying the buffer, and for writing a newline.

public void newLine () throws IOException
Write a system-defined line separator.

public void flush () throws IOException
Flush the buffer.

Classe©utputStreamWriter andFileWriter

OutputStreamWriter adapts a©OutputStream to aWriter , and is symmetric to
InputStreamReader . An OutputStreamReader converts the character stream produced
by theWriter to a byte stream, using either a specified encoding or the system default encoding.

FileWriter extendOutputStreamWriter in a manner similar té-ileReader ’s exten-
sion ofInputStreamReader

Writer

wraps
OutputStreamWriter <>—= OutputStream

_ _ wraps
FileWriter <>———=| FileOutputStream

Constructors foFileWriter require that the file be specified either witBteng name, a
File object, or a system-dependent file descriptor.

public FileWriter (String fileName) throws IOException
Construct &ileWriter object given a file name.

public FileWriter (File file) throws IOException
Construct &ileWriter object given &ile object.

public FileWriter (FileDescriptor fd)
Construct &ileWriter object associated with a file descriptor.

A FileWriter will overwrite an existing file. One constructor allows you to specify teat an
existing file is to be appended rather than overwritten.

public FileWriter (String fileName, boolean append)
throws IOException
Construct &ileWriter object given a file name. #ippend is true, data will be
written to the end of the file rather than the beginning.

As an example, let’'s write a method that copies a file, replacing each sequence of one or more
spaces with a single space.
/**

* Copy input file to output file, replacing each sequence of
* one or more spaces with a single space.

* require:
* the specified inputFile must be a text file.
*/

void squeezeCopy (String inputFile, String outputFile)
throws IOException {

BufferedReader input =

new BufferedReader(new FileReader(inputFile));
BufferedWriter output =

new BufferedWriter(new FileWriter(outputFile));
int ch = input.read();

while (ch !=-1) {
output.write(ch);
if ch==""

do // skip other spaces
ch = input.read();
while (ch I=-1 && ch =="");
else

ch = input.read();
}
input.close();
output.close();

}
ClassPrintWriter

The clas®rintWriter is one of the most useful output stream clag3estWriter
extendsNriter and wraps either a@utputStream or aWriter . (If an OutputStream is
specified in thérintWriter constructor, an intermedia@utputStreamWriter wrap-
ping theOutputStream is automatically created. Thus propdPgnt\Writer wraps a
Writer which might be a®©utputStreamWriter)

PrintWriter provides functionality for writing string representations of primitive values and
objects. If arOutputStream is wrapped, characters are converted to bytes using the system
default encoding scheme.

Writer

wraps _ _ wraps
—] PrintWriter <>————=> OutputStream

The four constructors are specified as follows:

public PrintWriter (OutputStream out)
Create &@rintWriter that sends output to the specifiedtputStream . An
intermediateOutputStreamWriter that converts characters to bytes using the
system default encoding is also constructed.

public PrintWriter (OutputStream out, boolean autoFlush)

Create &@rintWriter that sends output to the specifi@dtputStream . An
intermediateOutputStreamWriter that converts characters to bytes using the
system default encoding is also constructed.

If autoFlush s true, thePrintWriter calls itsflush method after every invo-
cation ofprintin

public PrintWriter (Writer out)
Create @rintWriter that sends output to the specifidfiter

public PrintWriter (Writer out, boolean autoFlush)
Create @rintWriter that sends output to the specifidfiter

If autoFlush s true, thePrintWriter calls itsflush method after every invo-
cation ofprintin

Among the methods provided are these.

public void print (boolean b)
Write "true” or"false" to the output stream depending on the value specified.

public void print (char c)
Write the specified character to the output stream.

public void print (double d)
Write a string representation of the specifiedible to the output stream.

public void print (Object obj)
Write a string representation of the specifidgject to the output stream, using the
Object ’'stoString method.

public void print (String s)
Write the specifie®tring to the output stream.

public void printin ()
Write a (system dependent) line separator to the output stream

public void printin (boolean b)
Write "true" or"false” to the output stream depending on the value specified,
followed by a line separator.

public void println (char c)
Write the specified character to the output stream, followed by a line separator.

public void println (double d)
Write a string representation of the specifiedible to the output stream, followed
by a line separator.

public void println (Object obj)
Write a string representation of the specifidgject to the output stream, using the
Object ’'stoString method, followed by a line separator.

public void println (String s)

Write the specifie®tring to the output stream, followed by a line separator.

System constants

The data streams standard input, standard output, and standard error are accessible through con-
stants defined in the clagwa.lang.System . Standard input is specified aslaput-

Stream , while standard output and standard error are specifiedraStreams . (Error

messages, of course, should be written to standard error, not standard output.)

public static final PrintStream err; // standard error
public static final PrintStream out; // standard out
public static final InputStream in; // standard in

Here’s a simple method that copies a file line by line to standard output. If no file is specified, the
method copies standard input to standard output. The method assumes that the input is made up of
a number of lines.

Note that thénputStream System.out is first adapted t&r@ader by wrapping it in an
InputStreamReader . ThelnputStreamReader is wrapped in 8ufferedReader

/**

* Copy the specified file to standard output. If fileName
* is null, copy standard input to standard output.
* require:
* the specified file must be a text file,
* comprosed of lines. (In particular, if not empty
* it must end with a line terminator.)
*/
void miniCat (String fileName) throws IOException {
BufferedReader input;
if (fileName == null)
input = new BufferedReader(
new InputStreamReader(System.in));
else
input = new BufferedReader(
new FileReader(fileName));
String line = input.readLine();
while (line = null) {
System.out.printin(line);
line = input.readLine();
}
input.close();
System.out.close();

	Stream i/o
	Data streams
	OOJ library classes
	Standard java.io library classes

