
e

ion

 pro-
tream
doc-
te,

lication.

eptu-
rature
is
way of
.

ter-

harac-
inary

sents

tream –

ou
Stream i/o

Data streams

An application may have access to severaldata streams. A data stream is essentially nothing mor
than a sequence of bytes. If the stream is a source of data for the application, it is aninput stream.
The applicationreadsdata from an input stream, removing it from the stream. If it is a destinat
for data from the application (or “sink”), it is anoutput stream. The applicationwrites data to an
output stream, appending it to the stream.

The actual source of the data in an input stream might be a user’s keyboard, a file, another
gram, a network connection, an external device, etc. Likewise, the destination of an output s
could be a terminal window, a file, another program, a network connection, and so on. In this
ument, we consider streams associated with files, the keyboard, and a terminal window. No
though, that the actual source or sink of a data stream generally does not matter to an app

A data stream can be finite – for instance, if the source of an input stream is a file – or conc
ally unbounded – for instance, if the source of an input stream is a sensor that reports tempe
every ten seconds. An application generally has a way of determining that an input stream
exhausted, that all the data has been read and no more data will appear in the stream, and a
indicating that an output stream is complete, that no more data will be written to the stream

The bytes that comprise a data stream can be interpreted in many ways. If they are to be in
preted as characters, the stream is usually referred to ascharacter stream. Otherwise, the stream is
abinary stream. For example, if the source of an input stream is a text file, the stream is a c
ter stream. If the source is a file in which each group of four bytes is a two’s complement b
integer, the stream is a binary stream.

We need to be a little careful with our terminology in regard to Java. Specifically, Java repre
characters with the 16-bit Unicode character set. In Java, the termcharacter stream refers to a
data stream whose elements are to be interpreted as Unicode characters. Any other data s
even one whose elements are ordinary 8-bit ASCII characters – is abyte stream.

OOJ library classes

In this section, we review the OOJ i/o library, available at
http://www.cs.uno.edu/~fred/OOJ/Utilities/Libraries/ . The standard
packagejava.io is considered in the next section. If you are not interested in this library, y
may skip this section.

input streams output streams

Application

… b b b b b b b b b …

… b b b b b b b b b …

… b b b b b b b b b …

… b b b b b b b b b …

rsion

of ven-
jor

nd

II.

e

essible
 an
. For

 “stan-

s run.

 the
, and

ry.
The packagejava.io is rather formidable, and not easily digestible. The package
OOJ.basicIO includes very basic classes for using simple data streams. It is based on a ve
of Bertrand Meyer’s libraries for the programming languageEiffel. Some programmers staunchly
oppose using libraries that are not either standard or home grown. Considering the amount
dor and third-party software we trust, this seems to us a little narrow minded. After all, a ma
thrust of the paradigm is producing reusable software and building on the work of others.

The fundamental classes inOOJ.basicIO areBasicFileReader and
BasicFileWriter . A BasicFileReader instance is associated with an input stream, a
aBasicFileWriter instance is associated with an output stream. The data streams are
assumed to contain characters represented with the default system encoding, typically ASC

BasicFileReader

BasicFileReader has two constructors. The first requires that the name of an input file b
provided as aString argument:

public BasicFileReader (String fileName)
Create an input stream for the named file.

Exactly what constitutes a legal file name is system dependent. The file must exist, be acc
to the process, and should be a standard (ASCII) text file. Invoking the constructor creates
input stream whose source is the file. Reading from the stream is simply reading from the file
example, iffred.txt is a text file,

BasicFileReader input = new BasicFileReader("fred.txt");

will create an object that reads the filefred.txt .

The second constructor requires no arguments, and creates a input stream associated with
dard input.”

public BasicFileReader ()
Create an input stream for standard input.

The source of standard input is determined by the operating system when the application i
Typically standard input comes from the keyboard.

Reading from an input stream

Once aBasicFileReader has been created for a stream, we can use its methods to read
data in the stream. There are five commands for reading one or more bytes from the stream
four queries for determining what was read. A read command is typically followed by a que

The commands are:

public void readChar ()
Read a new character from this input stream.

public void readInt ()
Read a new integer from this input stream.

public void readDouble ()

Read a new double from this input stream.

public void readLine ()
Read the rest of the line from this input stream.

public void readWord ()
Read a new word from this input.

The queries are:

public char lastChar ()
Character most recently read byreadChar .

public int lastInt ()
int most recently read byreadInt .

public double lastDouble ()
double most recently read byreadDouble .

public String lastString ()
String most recently read byreadWord or readLine .

There is also a query for determining whether or not the stream is exhausted:

public boolean eof ()
End of input stream has been reached.

For example, suppose that the first three lines of the filefred.txt contain the following, where
“ • ” represents a space and “↵” represents the “newline” character at the end of the line:

•Hello ↵
••testing• ↵
••123xyz•• ↵

and that aBasicFileReader is created to read from the file:

BasicFileReader input = new BasicFileReader("fred.txt");

Executing the command

input.readChar();

will cause the first character of the file (a space) to be read. The statement

char c = input.lastChar();

will assign the character to the variablec . ExecutingreadChar again will cause the next char-
acter (the “H”) to be read, and so on.

The following loop will read characters skipping spaces, and assign toc the character following
the spaces:

input.readChar();
while (input.lastChar() == ' ')

input.readChar();

 the

ce

be
-

c = input.lastChar();

If the second line of file described above were being read, the character “t ” would be assigned to
c .

The methodreadInt skips any “white space” at the beginning of the input stream. “White
space” is any sequence of spaces, tabs, end of lines,etc. The characters following the white space
must denote an optionally-signed decimal integer. The method reads these characters, and
integer value denoted can be obtained with the querylastInt . For example, if the third line of
the file described above were being read, the statement

input.readInt();

would read characters up to (but not including) the “x ”. The statement

int i = input.lastInt();

would assign the value 123 to the variablei .

The methodreadDouble is similar, but requires that the characters following the white spa
have the form of an optionally signed double literal.

The methodreadWord reads the next word in the input stream, where a “word” is defined to
a sequence of non white space characters. The methodreadLine reads the remainder of the cur
rent line.

Suppose, for example, the filefred.txt contains five lines:

•Hello ↵
••testing• ↵
••123xyz•• ↵
↵
•+3e+4abc• ↵

We show the input stream after each command, and what the relevant query returns.

command input stream la
st
Cha

r()

la
st
In

t()

la
st
Dou

bl
e(

)

input.readChar();

•Hello ↵
••testing• ↵
••123xyz•• ↵
↵
•+3e+4abc• ↵

' '

"testing"

la
st
Stri

ng
()

123 3e4

Hello ↵
••testing• ↵
••123xyz•• ↵
↵
•+3e+4abc• ↵

? ? ? ?

? ? ?

input.readChar();

'H' ? ? ?ello ↵
••testing• ↵
••123xyz•• ↵
↵
•+3e+4abc• ↵

input.readLine();

'H' "ello" ? ?••testing• ↵
••123xyz•• ↵
↵
•+3e+4abc• ↵

input.readWord();

'H' "testing" ?• ↵
••123xyz•• ↵
↵
•+3e+4abc• ↵

?

input.readInt();

'H' "testing" ?xyz•• ↵
↵
•+3e+4abc• ↵

123

input.readLine();

'H' "xyz " ?↵
•+3e+4abc• ↵

123

input.readDouble();

'H' "xyz " 3e4abc• ↵ 123

 For

ore, and

 the
The queryeof (“end of file”) can be used to determine when the input stream is exhausted.
instance, the following method counts the number of lines int he named file.

/**
 * The number of lines in the specified file.
 */
public int lineCount (String fileName) {

BasicFileReader input = new BasicFileReader(fileName);
int count = 0;
while (!input.eof()) {

input.readLine();
count = count + 1;

}
return count;

}

Suppose each line of a file contains space separated integer student number, integer test sc
student name. For example, a line might look like this:

96669 66 Back, Helen

The following method reads the file, and produces a list of test scores.

/**
 * Test scores from Student data.
 * require:
 * each line of the named file must have the format:
 * integer integerTestScore unspecified
 */
public IntegerList scores (String fileName) {

BasicFileReader input = new BasicFileReader(fileName);
IntegerList scores = new IntegerList();
while (!input.eof()) {

input.readInt(); // skip 1st int on line
input.readInt();
scores.append(new Integer(input.lastInt()));
input.readLine();

}
return scores;

}

BasicFileWriter

BasicFileWriter also has two constructors, one requiring a file name as argument and
other creating a stream to standard output.

public BasicFileWriter (String fileName)
Create an output stream for the named file.

e
rating

o ver-
n’t.

e

public BasicFileWriter ()
Create an output stream for standard output.

If the file specified in the first constructor does not exist, it will be created. If it exists, it will b
overwritten. As with standard input, the source of standard output is determined by the ope
system when the application is run. Typically standard output goes to a terminal window.

The commands write standard text (typically ASCII characters) to the stream. There are tw
sions of each output command, one that appends a “newline” character and one that does

public void display (char ch)
Write the specifiedchar to the output stream.

public void display (int value)
Write a decimal representation of the specifiedint to the output stream.

public void display (double value)
Write a decimal representation of the specifieddouble to the output stream.

public void display (Object obj)
Write aString representation of the specifiedObject to the output stream.

public void display (String st)
Write the specifiedString to the output stream.

public void displayLine (char ch)
Write the specifiedchar to the output stream, followed by a line separator.

public void displayLine (int value)
Write a decimal representation of the specifiedint to the output stream, followed by
a line separator.

public void displayLine (double value)
Write a decimal representation of the specifieddouble to the output stream, followed
by a line separator.

public void displayLine (Object obj)
Write aString representation of the specifiedObject to the output stream, fol-
lowed by a line separator.

public void displayLine (String st)
Write the specifiedString to the output stream, followed by a line separator.

Utility methods are provided for writing blank lines, flushing the output buffer, and closing th
stream:

public void blankLine (int n)
Write the specified number of blank lines to the output stream.

public void flush ()
Flush the output buffer: write any buffered data to the output

 in a

.

r

and
nds

r

public void close ()
Close the output stream.

Output is typically buffered in memory until a line is completed. For instance, ifoutput is a
BasicFileWriter ,

basicFileWriter output = new basicFileWriter();

executing the command

output.display("Hello");

will not send the characters to the output stream immediately. The characters will be stored
memory buffer until a complete line can be written. If the next command is

output.displayLine(" World!");

the eleven characters “Hello World ” followed by a newline will be sent to the output stream

Sometimes you would like to characters to be displayed immediately without a newline. Fo
instance, if you are trying to prompt the user for input, you might want the characters

Please enter the file name:

to be written in the user’s window, with the cursor remaining at the end of the line. The comm
flush causes any buffered output to be written to the output stream. So the pair of comma

output.display("Please enter the file name: ");
output.flush();

displays the string immediately without waiting for a line-ending newline.

The commandclose also flushes the buffer, and closes the output stream.

Exceptions

The package OOJ.basicIO defines three exceptions:DataException , EOFException ,
andIOException . These are all unchecked exceptions (RunTimeExceptions), so you can
ignore them if you wish.

A DataException is thrown byreadInt or readDouble if the characters in the input
stream don’t have the appropriate format. For instance, ifreadInt is invoked and the next non-
blank character in the input stream is a letter, then aDataException is thrown.

Catching a DataException can be used to direct a “retry” in an interactive input method. Fo
instance, suppose we want the user to enter an integer temperature value. We might write

int temp;
output.display("Enter temperature, as an integer: ");
output.flush();
input.readInt();
temp = input.lastInt();

nce.

forma-

the
s
ethod

le
yte
ilities

 catego-
If the user enters something besides a legal integer, we might want to give him another cha
We catch theDataException , and try again.

int temp;
boolean needTemp = true;
while (needTemp) {

try {
output.display("Enter temperature, as an integer: ");
output.flush();
input.readInt();
temp = input.lastInt();
needTemp = false;

} catch (DataException e) {
output.displayLine("Please enter an integer!");

}
}

When the invocation ofreadInt succeeds, we setneedTemp to false , and are done. If it
fails because the user has not entered a legal integer, we catch the exception, write out an in
tional message and try again.

The exceptionEOFException is thrown by a read method if there are no more characters in
input stream, or not enough characters to satisfy the read request. For instance, if readInt i
invoked and only characters remaining in the input stream are white space characters, the m
will read past the white space and then throw anEOFException .

Any other problem with reading or writing results in anIOException being thrown.

Standard java.io library classes

The standard packagejava.io is a menagerie containing, at last count, ten interfaces, fifty
classes, and sixteen exceptions. The functionality can be categorized as

• facilities for reading and writing data streams;
• facilities for manipulating files;
• facilities for serializing objects.

File manipulation facilities include the classFile , which models a file in the local file system,
and the classRandomAccessFile , which provides mechanisms for reading and writing a fi
in a non-sequential manner. Object serialization provides a means for writing objects to a b
stream, and later recreating the objects from the byte stream. We will not consider these fac
in this document.

The classes that support reading and writing from data streams can be organized into four
ries:

• classes for reading byte streams;
• classes for writing byte streams;
• classes for reading character streams;
• classes for writing character streams.

racters.
the byte
s are not

e
 by
s. The
the
tral

f the

 of the

 is
 65.

e data
by the
es

tered),
k-

8-bit
Latin
Recall that a Java character stream is a data stream whose elements are 16-bit Unicode cha
Any other data stream is a byte stream. The character stream classes were developed after
stream classes. So although there are similarities, byte stream and character stream classe
entirely symmetric.

Each category has an abstract class at the top of its hierarchy:InputStream andOutput-
Stream for byte streams, andReader andWriter for character streams. Other classes in th
hierarchies extend the functionality of the base classes in two ways: some add functionality
extending the base classes; others add functionality by wrapping an instance of another clas
benefits of composition (wrapping) are explained in [NH 15]. Principally, composition allows
extended functionality to be applied dynamically, at run-time. We consider some of the cen
classes in each category.

Input byte streams

Abstract classInputStream

The top of the hierarchy is the abstract classInputStream . Fundamental methods for reading
the stream are specified in this class, including:

public abstract int read () throws IOException
Read and return the next byte of data from the input stream. Return -1 if the end o
stream is encountered (the stream is exhausted).

ensure:
0 <= this.read() <= 255 || this.read() == -1

Note that this method is neither a proper command nor a proper query. It changes the state
stream and returns a value. Most of thejava.io input methods are of this flavor.

The methodread returns the byte value as a non-negativeint . For instance, if the next byte in
the stream is the ASCII character ‘A’, the integer value 65 will be returned: the character ‘A’
denoted by the eight bits 01000001 in ASCII, and 01000001 is the binary representation of

If no data is available but the end of the stream has not been seen, the method waits for mor
to appear. For instance, if the data source is the keyboard, and all the data previously keyed
user has been read, the methodread blocks until the user keys another line. (How the user clos
an input stream whose source is the keyboard depends on the operating system. KeyingCon-
trol-D on a line by itself is typical.)

If the next byte cannot be read (for a reason other than the end of the stream being encoun
the method throws ajava.io.IOException . This is a checked exception: the method invo
ing read must either catch the exception or include athrows clause indicating that it might
also throw the exception.

Recall that the primitive Java typechar is a numeric type. Achar value is automatically
extended to anint when necessary, and anint value can be explicitly converted (by casting) to
achar . Furthermore, the 16-bit Unicode representation of a standard ASCII character is the
ASCII character with high-order 0’s added. For example, the Unicode representation of the
‘A’ is the 16-bits 00000000 01000001. Considered as a binary integer, this is also 65. Ifinput is

fely

nput

d; oth-
t,

o

anInputStream containing ASCII characters (from the keyboard, for instance), we can sa
convert the ASCII characters to values of typechar :

int i = input.read();
if (i != -1)

char c = (char)i;

Two additionalread methods are specified in the classInputStream . These both require a
byte array as argument, and store data into the array. For instance,

public int read (byte[] b) throws IOException
Read some number of bytes from the input stream and store them into the arrayb. The
number of bytes actually read is returned as an integer. This method blocks until i
data is available, end of file is detected, or an exception is thrown.

If no byte is available because the stream is at end of file, the value -1 is returne
erwise, at least one byte is read and stored intob. The number of bytes read is, at mos
equal to the length ofb.

If the first byte cannot be read for any reason other than end of file, then anIOEx-
ception is thrown. In particular, anIOException is thrown if the input stream
has been closed.

Other methods specified include

public void close () throws IOException
Close the input stream and release associated resources.

public long skip (long n) throws IOException
Skip over and discardn bytes of data from this input stream. The actual number of
bytes skipped is returned. Ifn is negative, no bytes are skipped.

For details of these and other methods, see the library specifications at
http://java.sun.com .

ClassFileInputStream

FileInputStream is a straightforward concrete extension ofInputStream .

FileInputStream specifies a file as the source of the input stream, but otherwise adds n
functionality to that specified byInputStream . A FileInputStream is generally wrapped

InputStream

FileInputStream

with aDataInputStream , BufferedInputStream , or InputStreamReader to pro-
vide a richer interface. We postpone examples until we consider these classes.

The file is identified – either with aString file name, aFile object, or a system-specific file
descriptor – in theFileInputStream constructor. The file is implicitly opened when the
FileInputStream instance is created. The constructors are:

public FileInputStream (String name)
throws FileNotFoundException, SecurityException

public FileInputStream (File file)
throws FileNotFoundException, SecurityException

public FileInputStream (FileDescriptor fd)
throws SecurityException

The exceptionjava.io.FileNotFoundException is a checked exception;
java.lang.SecurityException is unchecked.

ClassFilterInputStream

FilterInputStream provides no additional functionality, but serves as a base class for
InputStream wrappers.

Note thatFilterInputStream is also s subclass ofInputStream . This allows oneFil-
terInputStream to wrap anotherFilterInputStream .

Two commonly used subclasses ofFilterInputStream areDataInputStream and
BufferedInputStream .

FilterInputStream

InputStream

wraps

FilterInputStream

DataInputStream BufferedInputStream

 the

-128

enta-

, a
 are
h
input
f
 fill the
DataInputStream provides methods for reading values of primitive Java data types from
input stream. Included are the following:

public boolean readBoolean () throws IOException
Read one byte and returntrue if the byte is non-zero,false if the byte is zero.

public char readChar () throws IOException
Read two bytes and return the value as a Unicode character.

public double readDouble () throws IOException
Read eight bytes and return the value as adouble .

public int readInt () throws IOException
Read four bytes and return the value as anint .

public byte readByte () throws IOException
Read and return one input byte. The byte is treated as a signed value in the range
through 127, inclusive.

Note that these methods donot read character representation of the values, but binary repres
tions. You would not use these methods to read an ASCII file for instance. They throw a
java.io.EOFException if the end of the input stream is encountered during the read
attempt. (java.io.EOFException is a subclass ofjava.io.IOException .)

A BufferedInputStream uses an in-memory buffer to store input from the stream. That is
large number of bytes are read from the input stream and stored in an internal buffer. Bytes
then read directly from the internal buffer. When the buffer is exhausted, it is filled again wit
another chunk of data form the input stream. Of course, the operating system also buffers
data in memory if possible. Using aBufferedInputStream , however, reduces the number o
calls to the operating system. The operating system need only be accessed occasionally to
buffer.

As we’ve said, these subclasses ofFilterInputStream wrap anInputStream . The
InputStream component is provided as a constructor argument:

public DataInputStream (InputStream in)
Create aDataInputStream that reads from the givenInputStream .

public BufferedInputStream (InputStream in)
Create aBufferedInputStream that buffers input from the given
InputStream in a buffer with the default size of 2048 bytes.

To see how this works, suppose the filenoise.dat contains a sequence of 32-bit (four byte)
integer values. The file can be opened and wrapped with aDataInputStream as

FileInputStream in = new FileInputStream("noise.dat");
DataInputStream data = new DataInputStream(in);

or simply as

DataInputStream data =
new DataInputStream(new FileInputStream("noise.dat"));

ld

:

-

 is

-
.) The
The integer values can be read by using theDataInputStream methodreadInt :

int i;
try {

while (true) {
i = data.readInt();
process(i);

}
} catch (EOFException e) {

data.close();
}

Using an exception to detect the expected end of input condition is annoying.

We mentioned that sinceFilterInputStream is a subclass ofInputStream , oneFil-
terInputStream can wrap another. If we wanted to buffer input from the above file, we cou
first wrap theFileInputStream in BufferedInputStream :

FileInputStream in = new FileInputStream("noise.dat");
BufferedInputStream bf = new BufferedInputStream(in);
DataInputStream data = new DataInputStream(bf);

Of course, there is really no need to name all these instances. We could just as easily write

DataInputStream data =
new DataInputStream(

new BufferedInputStream(
new FileInputStream("noise.dat")));

Input character streams

Abstract classReader

The top level of the input character stream hierarchy is the abstract classReader . Reader is
similar in purpose and structure toInputStream , butReader reads a stream of Unicode char
acters rather than bytes. Its basicread method is specified as follows:

public int read () throws IOException
Read and return the next character of data from the input stream. The character

returned as an integer in the range 0 to 65535 (0 to 216-1). Returns -1 if the end of the
stream is encountered (the stream is exhausted).

ensure:
0 <= this.read() <= 65535 || this.read() == -1

Note that the method returns a value of typeint , not of typechar . (Why? So that there is a con
venient “non-character” value that can be returned if the end of the stream has been reached
postcondition guarantees that theint can be safely cast to achar . If reader is aReader , we
can write

int i = reader.read();

if (i != -1)
char c = (char)i;

ClassBufferedReader

BufferedReader is used to buffer character stream input in much the same way that
BufferedInputStream is used to buffer byte stream input.

BufferedReader has a handy method for reading a line of input:

public String readLine () throws IOException
Read and return a line of text. Returnnull if the end of the stream is encountered.
Line terminating characters are not included in theString .

ClassInputStreamReader

InputStreamReader is an adapter class that wraps anInputStream and provides the
functionality of aReader .

TheInputStreamReader converts each byte of theInputStream to a Unicode character
using an encoding scheme that can be specified when theInputStreamReader is created. If
no encoding scheme is specified, a system default is used.

public InputStreamReader (InputStream in)
Create anInputStreamReader that reads from the givenInputStream and
translates bytes to characters using the system default encoding.

public InputStreamReader (InputStream in, String enc)
throws UnsupportedEncodingException

BufferedReader

Reader

wraps

Reader

InputStreamReader InputStream
wraps

ost
ASCII.

mber
Create anInputStreamReader that reads from the givenInputStream and
translates bytes to characters using the specified encoding.

A typical default encoding is ISO-8859-1 (Latin 1). This is an 8-bit character set that covers m
Western European languages. The first 128 characters (characters 0 to 127) are identical to
To explicitly specify this encoding, give the string "ISO8859_1 " as the second argument to the
constructor.

ClassFileReader

FileReader extendsInputStreamReader . In effect, aFileReader is an
InputStreamReader using the system default encoding and wrapped around a
FileInputStream .

The constructors are similar to those ofFileInputStream :

public FileReader (String name)
throws FileNotFoundException, SecurityException

public FileReader (File file)
throws FileNotFoundException, SecurityException

public FileReader (FileDescriptor fd)
throws SecurityException

Examples

A line-by-line reader

First, let’s write a simple method that takes the name of a text file as argument, counts the nu
of liens in the file, and returns the count. We will use thereadLine method ofBuffered-
Reader to read each line of input.

/**

Reader

InputStreamReader InputStream
wraps

FileReader FileInputStream
wraps

gain,

s any
t “white

acter
 * The number of lines in the specified file.
 * require:
 * the specified file must be a text file.
 */
int lineCount (String fileName) throws IOException {

BufferedReader input =
new BufferedReader(new FileReader(fileName));

int count = 0;
while (input.readLine() != null)

count = count + 1;
input.close();
return count;

}

Creating theFileReader creates aFileInputStream for reading the file and opens the
file. TheFileReader is passed to theBufferedReader constructor. TheBuffered-
Reader wraps theFileReader , providing thereadLine functionality.

Two character-by-character readers

As a second example, let’s write a method that counts the number of spaces in a text file. A
we use aBufferedReader , and read characters one at a time.

/**
 * The number of spaces in the specified file.
 * require:
 * the specified file must be a text file.
 */
int spaceCount (String fileName) throws IOException {

BufferedReader input =
new BufferedReader(new FileReader(fileName));

int count = 0;
int ch = input.read();
while (ch != -1) {

if (ch == ' ')
count = count + 1;

ch = input.read();
}
input.close();
return count;

}

Next, suppose we want a method that counts the number of words in a file, where a word i
sequence of non white space characters. Words are separated by white space. (Recall tha
space” is composed of spaces, tabs, end of lines,etc.) TheReader classes only provide methods
for reading a file character by character or line by line. Our approach is to read the file char
by character and check for white space. The standard classCharacter has a useful method:

public static boolean isWhitespace (char ch)

acters

g
cters.
en the

lt
r, the
Determine if the specified character is white space.

Using this method, we can write:

/**
 * The number of words in the specified file.
 * require:
 * the specified file must be a text file.
 */
int wordCount (String fileName) throws IOException {

BufferedReader input =
new BufferedReader(new FileReader(fileName));

int count = 0;
int ch = input.read();
while (ch != -1) {

if (Character.isWhitespace((char)ch))
do // skip white space

ch = input.read();
while (ch != -1 && Character.isWhitespace((char)ch));

else {
count = count + 1;
do // skip rest of word

ch = input.read();
while (ch != -1 && !Character.isWhitespace((char)ch));

}
}
input.close();
return count;

}

The first character in a word or sequence of white space is identified, and the remaining char
in the word of white space are skipped.

Using a tokenizer

The classjava.util.StringTokenizer can be useful for a problem like the previous. A
StringTokenizer is given aString as argument when it is created, and breaks the strin
into a sequence of “tokens” separated by “delimiters.” A token is simply a sequence of chara
A delimiter is a character that separates tokens. The delimiter characters can be specified wh
StringTokenizer is created. Two constructors are:

public StringTokenizer (String str, String delim)
Construct a string tokenizer for the specified string. The characters in thedelim argu-
ment are the delimiters for separating tokens.

public StringTokenizer (String str)
Construct a string tokenizer for the specified string. The tokenizer uses the defau
delimiter set, which is: the space character, the tab character, the newline characte
carriage-return character, and the form-feed character.

 imple-

mber,

 a

 the

must
Functions provided by theStringTokenizer include:

public boolean hasMoreTokens ()
There are more tokens available from this tokenizer’s string.

public String nextToken ()
The next token from this string tokenizer.

require:

this.hasMoreTokens()

In out case, the default set of white space delimiters is adequate. using a tokenizer, we can
ment the method as follows:

int wordCount (String fileName) throws IOException {
BufferedReader input =

new BufferedReader(new FileReader(fileName));
int count = 0;
String line = input.readLine();
while (line != null) {

StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

tokenizer.nextToken();
count = count+1;

}
line = input.readLine();

}
input.close();
return count;

}

Note that the token returned bynextToken is ignored.

As a final example, suppose each line of a file contains space separated integer student nu
integer test score, and student name. For example, a line might look like this:

96669 66 Back, Helen

We write a method that reads the file and produces a test average (mean). Again, we’ll use
BufferedReader and aStringTokenizer .

But we must convert the second token of each line into an integer value. To do this, we use
methodparseInt from the standard classInteger . This method is specified as

public static int parseInt (String s)
throws NumberFormatException

Parse the string argument as a signed decimal integer. The characters in the string
all be decimal digits, except that the first character may be an ASCII minus sign ‘- ’ to
indicate a negative value. The resulting integer value is returned. ThrowsNumber-
FormatException if the string does not contain a parsable integer.

t

yte

i-
/**
 * Average of test scores from Student data.
 * require:
 * each line of the named file must have the format:
 * integer integerTestScore unspecified
 */
public double average (String fileName) throws

IOException, NumberFormatException {
BufferedReader input =

new BufferedReader(new FileReader(fileName));
int count = 0;
int total = 0;
String line = input.readLine();
while (line != null) {

StringTokenizer tokenizer = new StringTokenizer(line);
tokenizer.nextToken(); // skip first token on line
int grade = Integer.parseInt(tokenizer.nextToken());
total = total + grade;
count = count + 1;
line = input.readLine();

}
input.close();
return (double)total/(double)count;

}

The classjava.io.StreamTokenizer can also be helpful in parsing input text. We do no
consider that class here.

Output byte streams

The collection of output stream classes mirrors the input classes. At the top of the output b
stream hierarchy is the abstract classOutputStream . Fundamental methods are:

public abstract void write (int b) throws IOException
Write the specified byte (low order 8 bits of theint provided) to the output stream.

public void close () throws IOException
Close the output stream and release any associated resources.

public void flush () throws IOException
Write any buffered bytes to the output stream.

FileOutputStream extendsOutputStream by allowing a file to be specified as the dest
nation of the output in much the same way thatFileInputStream extendsInputStream .

FilterOutputStream provides a base class forOutputStream wrappers, again in a way
similar to its input counterpart,FilterInputStream . BufferedOutputStream and
DataOutputStream extendFilterOutputStream , and provide functionality symmetric
to their input stream counterparts. (The classPrintStream also extendsFilterOutput-

do not

in
a

t
for

d
ding.
Stream . However,PrintWriter , discussed below, should be used instead ofPrint-
Stream .) Details on these classes can be obtained from the standard documentation. We
consider them further.

Output character streams

ClassWriter

The abstract classWriter is at the top of the output character stream hierarchy. It is similar
functionality toOutputStream , but itswrite method writes a Unicode character rather than
byte.

public abstract void write (int c) throws IOException
Write a character consisting of the low order 16 bits of theint provided to the output
stream.

ClassBufferedWriter

The wrapper classBufferedWriter extendsWriter , and is symmetric to theReader class
BufferedReader .

BufferedWriter constructors require that aWriter be provided as argument.

A BufferedWriter writes characters to a memory buffer rather than directly to the outpu
stream. The buffer is emptied to the output stream as needed. The class defines methods
explicitly emptying the buffer, and for writing a newline.

public void newLine () throws IOException
Write a system-defined line separator.

public void flush () throws IOException
Flush the buffer.

ClassesOutputStreamWriter andFileWriter

OutputStreamWriter adapts anOutputStream to aWriter , and is symmetric to
InputStreamReader . An OutputStreamReader converts the character stream produce
by theWriter to a byte stream, using either a specified encoding or the system default enco

BufferedWriter

Writer

wraps

ore
FileWriter extendsOutputStreamWriter in a manner similar toFileReader ’s exten-
sion ofInputStreamReader .

Constructors forFileWriter require that the file be specified either with aString name, a
File object, or a system-dependent file descriptor.

public FileWriter (String fileName) throws IOException
Construct aFileWriter object given a file name.

public FileWriter (File file) throws IOException
Construct aFileWriter object given aFile object.

public FileWriter (FileDescriptor fd)
Construct aFileWriter object associated with a file descriptor.

A FileWriter will overwrite an existing file. One constructor allows you to specify teat an
existing file is to be appended rather than overwritten.

public FileWriter (String fileName, boolean append)
throws IOException

Construct aFileWriter object given a file name. Ifappend is true, data will be
written to the end of the file rather than the beginning.

As an example, let’s write a method that copies a file, replacing each sequence of one or m
spaces with a single space.

/**
 * Copy input file to output file, replacing each sequence of
 * one or more spaces with a single space.
 * require:
 * the specified inputFile must be a text file.
 */
void squeezeCopy (String inputFile, String outputFile)

throws IOException {

Writer

OutputStreamWriter OutputStream
wraps

FileWriter FileOutputStream
wraps

nd
m

BufferedReader input =
new BufferedReader(new FileReader(inputFile));

BufferedWriter output =
new BufferedWriter(new FileWriter(outputFile));

int ch = input.read();
while (ch != -1) {

output.write(ch);
if (ch == ' ')

do // skip other spaces
ch = input.read();

while (ch != -1 && ch == ' ');
else

ch = input.read();
}
input.close();
output.close();

}

ClassPrintWriter

The classPrintWriter is one of the most useful output stream classes.PrintWriter
extendsWriter and wraps either anOutputStream or aWriter . (If an OutputStream is
specified in thePrintWriter constructor, an intermediateOutputStreamWriter wrap-
ping theOutputStream is automatically created. Thus properlyPrintWriter wraps a
Writer which might be anOutputStreamWriter .)

PrintWriter provides functionality for writing string representations of primitive values a
objects. If anOutputStream is wrapped, characters are converted to bytes using the syste
default encoding scheme.

The four constructors are specified as follows:

public PrintWriter (OutputStream out)
Create aPrintWriter that sends output to the specifiedOutputStream . An
intermediateOutputStreamWriter that converts characters to bytes using the
system default encoding is also constructed.

public PrintWriter (OutputStream out, boolean autoFlush)

Writer

PrintWriter OutputStream
wrapswraps

.

,

Create aPrintWriter that sends output to the specifiedOutputStream . An
intermediateOutputStreamWriter that converts characters to bytes using the
system default encoding is also constructed.

If autoFlush is true, thePrintWriter calls itsflush method after every invo-
cation ofprintln .

public PrintWriter (Writer out)
Create aPrintWriter that sends output to the specifiedWriter .

public PrintWriter (Writer out, boolean autoFlush)
Create aPrintWriter that sends output to the specifiedWriter .

If autoFlush is true, thePrintWriter calls itsflush method after every invo-
cation ofprintln .

Among the methods provided are these.

public void print (boolean b)
Write "true" or "false" to the output stream depending on the value specified

public void print (char c)
Write the specified character to the output stream.

public void print (double d)
Write a string representation of the specifieddouble to the output stream.

public void print (Object obj)
Write a string representation of the specifiedObject to the output stream, using the
Object ’s toString method.

public void print (String s)
Write the specifiedString to the output stream.

public void println ()
Write a (system dependent) line separator to the output stream

public void println (boolean b)
Write "true" or "false" to the output stream depending on the value specified
followed by a line separator.

public void println (char c)
Write the specified character to the output stream, followed by a line separator.

public void println (double d)
Write a string representation of the specifieddouble to the output stream, followed
by a line separator.

public void println (Object obj)
Write a string representation of the specifiedObject to the output stream, using the
Object ’s toString method, followed by a line separator.

public void println (String s)

gh con-

, the
e up of
Write the specifiedString to the output stream, followed by a line separator.

System constants

The data streams standard input, standard output, and standard error are accessible throu
stants defined in the classjava.lang.System . Standard input is specified as anInput-
Stream , while standard output and standard error are specified asPrintStreams . (Error
messages, of course, should be written to standard error, not standard output.)

public static final PrintStream err; // standard error
public static final PrintStream out; // standard out
public static final InputStream in; // standard in

Here’s a simple method that copies a file line by line to standard output. If no file is specified
method copies standard input to standard output. The method assumes that the input is mad
a number of lines.

Note that theInputStream System.out is first adapted to aReader by wrapping it in an
InputStreamReader . TheInputStreamReader is wrapped in aBufferedReader .

/**
 * Copy the specified file to standard output. If fileName
 * is null, copy standard input to standard output.
 * require:
 * the specified file must be a text file,
 * comprosed of lines. (In particular, if not empty
 * it must end with a line terminator.)
 */
void miniCat (String fileName) throws IOException {

BufferedReader input;
if (fileName == null)

input = new BufferedReader(
new InputStreamReader(System.in));

else
input = new BufferedReader(

new FileReader(fileName));
String line = input.readLine();
while (line != null) {

System.out.println(line);
line = input.readLine();

}
input.close();
System.out.close();

}

	Stream i/o
	Data streams
	OOJ library classes
	Standard java.io library classes

