
ADDENDUM Y Dispensers and
dictionaries

To this point, the only containers we have seen have been lists. We conclude with a brief
look at two additional kinds of containers: dispensers and dictionaries. A dispenser is a
container to which we can freely add items but restricts item access and removal.

A dictionary is a container in which elements are accessed by key. For instance, a tele-
phone directory is a dictionary in which items are accessed by name. The name serves as a
key to access the telephone number.

 We specify dictionaries and three very commonly used dispensers: stacks, queues,
and priority queues. We consider straightforward implementations and see how ListImple-
mentation classes can be adapted to provide dispenser implementations. Efficient imple-
mentations of priority queues and dictionaries, however, are beyond the scope of the text.

y.1 Dispensers

As we’ve said, a dispenser is a container that restricts access to its elements. In particular,
there is one element in the container that we will call the current element. This is the only
element that can be accessed or removed from the container. Removing the current ele-
ment, of course, causes another element to become current. Adding an element to the dis-
penser may or may not change the current element, depending on the type of dispenser.

Figure y.1 A gumball dispenser.
1

2 Addendum yDispensers and dictionaries
We assume that a dispenser has three essential features: a method for adding items to
the container, a method for removing items, and a method for accessing items. Different
kinds of dispensers use different names for these operations, but we’ll refer to them gener-
ically as add, remove, and get:

void add (Element element)
Add the specified element to this dispenser.

void remove ()
Remove the current element from this dispenser.

Element get ()
The current element of this dispenser.

The query get allows us to access the current item, and the command remove
removes the current item from the dispenser.

There are many ways to define and implement dispensers. One common approach
combines access and removal into one operation. That is, there is a method

Element dispenseItem ()

that removes an item from the dispenser, and returns the removed item. That is,

obj = dispenser.dispenseItem();

is equivalent to

obj = dispenser.get();
dispenser.remove();

While dispenseItem may capture the intuitive semantics of the word “dispenser”
– a dispenser gives us one of its items, thereby removing it from the dispenser – we adopt
the former approach. We prefer to differentiate commands from queries, and not unneces-
sarily introduce public queries that change an object’s state.

y.2 Stacks

A stack is a simple dispenser in which the current item is the container item that has been
added most recently. That is, it is the youngest or newest item in the container. Stacks can
be implemented efficiently, and are used in many diverse applications.

An obvious model of a stack is a list in which items are added, accessed, and removed
from one end only. The name “stack” derives from the image conveyed by this model. A
stack is sometimes called a last-in first-out, or LIFO, list. The end to which items are
added and from which they are removed is referred to as the top. (The other end is obvi-
ously the bottom.)

y.2 Stacks 3
In the context of a stack, the features get, add, and remove are traditionally named
top, push, and pop. The specification is given in Listing y.1. The following illustrates
adding items to and removing items from a stack.

Assume s is an initially empty Stack:

s.push(A); // s.top() is A

s.push(B); // s.top() is B

s.push(C); // s.top() is C

s.pop(); // s.top() is B

s.pop(); // s.top() is A

s.push(D); // s.top() is D

newest item

oldest item

items added at this end onlyitems removed from this end only

A

B

A

C

B

A

B

A

A

D

A

stack: a dispenser in which the current element is the container element most
recently added to the container.

4 Addendum yDispensers and dictionaries
Listing y.1 The interface Stack

Interface Stack<Element>

public interface Stack<Element>
Dispenser adhering to a last-in/first-out discipline.

Queries

public boolean isEmpty ()
This Stack contains no elements.

public boolean isFull ()
This Stack contains a maximum number of elements.

public Element top ()
The element of this Stack that was most recently added.

require:
!this.isEmpty()

Commands

public void push (Element element)
Add the specified element to this Stack.

require:
!this.isFull()
element != null

ensure:
!this.isEmpty()

public void pop ()
Remove the element of this Stack that was most recently added.

require:
!this.isEmpty()

public void clear ()
Remove all the elements from this Stack.

ensure:
this.isEmpty()

y.2 Stacks 5
y.2.1 Stack implementations

We can use the same pattern for implementing dispensers as we did for implementing lists.
That is, we can provide a generic abstract class to serve as a basis for implementations.
However, with the specification we have given for Stack, there is not much for the abstract
class to do except provide a toString method and a default implementation of clear.

We can clearly build stacks in the same ways that we built lists, with arrays or linked
structures. In an array-based implementation, we make the element with highest index the
top. This allows adding and removing to be done in constant time, without the need to
shuffle the entire array:

With a linked implementation, we make the first element the top. Again this allows us
to add and remove elements in constant time:

Now we have already developed classes for manipulating array-based and linked lists:
specifically, BoundedList and LinkedList. These classes have features for adding, remov-
ing, and accessing arbitrary elements. But the specifications of these features are not
exactly as we want them. For instance, there is no command push to add an element to
the front of a LinkedList. We must use the command add:

list.add(0,element);

We translate Stack features into BoundedList or LinkedList features by wrapping or
adapting in much the same way as we built DefaultList by wrapping the class Vector. That
is, we make the existing class a component of the new class, and forwarded responsibili-

Stack<Element>

AbstractStack<Element>

«interface»

0

1

2

3

4

5

6

top element

bottom elementA

B

C

D

D C B A

top element

6 Addendum yDispensers and dictionaries
ties to the component. For instance, we can define a class LinkedStack with a LinkedList
component as shown in Figure y.2.

It is also possible to adapt an existing class by extending it. For example, as illustrated
in Figure y.3, we can define an adapter that extends LinkedList and implements Stack.
Stack features are implemented by calls to appropriate LinkedList methods.

We can easily construct similar adapters for other List-like classes such as Bound-
edList.

Figure y.2 An adapter wrapping the class LinkedList.

Figure y.3 An adapter extending the class LinkedList.

Stack<Element>

AbstractStack<Element>

«interface»

LinkedStack<Element>
delegate

LinkedList<Element>

void push(Element e)

delegate.add(0,e);

Stack<Element>

«interface»

LinkedStack<Element>

LinkedList<Element>

void push(Element e)

this.add(0,e);

y.3 Queues 7
y.3 Queues

A queue is a simple dispenser in which the current item is the one least recently added to
the container; that is, the oldest item in the container. Queues are also commonly used in
many applications.

An obvious model of a queue is a list in which items are added to one end, and
accessed and removed from the other end:

A queue is sometimes called a first-in first-out, or FIFO, list. The end at which items
are added is the rear of the queue, and the end from which items are removed is the front.

In the context of a queue, the features add and remove are often called enqueue and
serve. We name the fundamental dispenser features front, append, and remove, and
give a specification in Listing y.2.

y.3.1 Queue implementations

Linked implementations

As for stacks, we can develop array-based and linked implementations for queues. If a
LinkedList maintains references to both ends of the list, elements can be added to either
end in constant time.

However, constant time deletes can be done only from the front of the list. This
implies that we should make the front of the queue be the front of the LinkedList. An
adapter class can easily be defined in much the same way as was done for Stack.

newestoldest

items added at this end onlyitems removed from this end only

queue: a dispenser in which the current element is the container element least
recently added to the container.

Header A B C

LinkedList

size

head

3

last

8 Addendum yDispensers and dictionaries
Listing y.2 The interface Queue

Interface Queue<Element>

public interface Queue<Element>
Dispenser adhering to a first-in/first-out discipline.

Queries

public boolean isEmpty ()
This Queue contains no elements.

public boolean isFull ()
This Queue contains a maximum number of elements.

public Element front ()
The element of this Queue that was least recently added.

require:
!this.isEmpty()

Commands

public void append (Element element)
Add the specified element to this Queue.

require:
!this.isFull()
element != null

ensure:
!this.isEmpty()

public void remove ()
Remove the element of this Queue that was least recently added.

require:
!this.isEmpty()

public void clear ()
Remove all the elements from this Queue.

ensure:
this.isEmpty()

y.3 Queues 9
Circular arrays

If we attempt to use the class BoundedList to implement queues, we encounter a problem.
While we can add and remove elements from one end of the list in constant time, adding
and removing elements from the other end requires shuffling the list, and takes linear time.
Thus if we implement queues with BoundedLists, we can make either append or
remove constant time (by appropriately choosing which end of the list is the front of the
queue), but the other command will be linear.

An array-based approach that permits all queue methods to operate in constant time is
to view an array logically as a circular structure, in which the element with index 0 follows
the highest indexed element. This is illustrated in Figure y.4.

The queue occupies a set of contiguous array elements, and “circulates” through the
array as items are added and removed.

The implementation maintains two indexes, front and rear, identifying the front
and rear elements of the queue; front is advanced when an item is removed from the
queue, and rear is advanced when an item is added.

Note that when the queue has one element, front == rear. Removing an element
increments front. Thus the relationship between these indexes is the same for both the
full queue and the empty queue. That is, (rear+1)%n == front for both the empty
and full queue, where n is the length of the array. The implementation is straightforward
and is given in Listing y.3.

Figure y.4 A circular array of size n.

0
1

2

3

4

5

n-1
n-2

6

.

.

.

0
1

2

3

4

5

n-1
n-2

6

.

.

.

front

rear

0
1

2

3

4

5

n-1
n-2

6

.

.

.

front

rear

append remove

0
1

2

3

4

5

n-1
n-2

6

.

.

.

front

rear

10 Addendum yDispensers and dictionaries
Figure y.5 Empty and full Queues, implemented with a circular array.

Listing y.3 The class CircularQueue

/**
 * Circular array implementation of the interface Queue
 */
class CircularQueue<Element> implements Queue<Element> {

private Object[] elements;
private int front; // index of the front Queue item
private int rear; // index of the rear Queue item
private int size; // size of the Queue

/**
 * Create a CircularQueue with specified maximum size.
 * @require maxSize >= 0
 * @ensure this.isEmpty()
 */
public CircularQueue (int maxSize) {

elements = new Object[maxSize];
size = 0;
front = 0;
rear = maxSize-1;

}

/**
 * The maximum size of this Queue.
 * @ensure this.maxSize() >= 0
 */
public int maxSize () {

return elements.length;
}

continued

0
1

2

3

4

56

front

A full Queue

7

8

9

10
11

An empty Queue

rear
0

1

2

3

4

56

7

8

9

10
11

front

rear

y.3 Queues 11
/**
 * The number of elements in this Queue.
 * @ensure this.size() >= 0 &&
 * this.size() <= this.maxSize()
 */
public int size () {

return this.size;
}

/**
 * This Queue contains no elements.
 */
public boolean isEmpty () {

return this.size == 0;
}

/**
 * This Queue contains a maximum number of elements.
 */
public boolean isFull () {

return this.size == elements.length;
}

/**
 * The element of this Queue least recently added.
 * @require !this.isEmpty()
 */
public Element front () {

return (Element)elements[front];
}

/**
 * Add a new element to this Queue.
 * @require element != null && !this.isFull()
 * @ensure !this.isEmpty()
 */
public void append (Element element) {

rear = next(rear);
elements[rear] = element;
size = size+1;

}
continued

Listing y.3 The class CircularQueue (cont’d)

12 Addendum yDispensers and dictionaries
/**
 * Remove the element of this Queue that was least
 * recently added.
 * @require !this.isEmpty()
 */
public void remove () {

front = next(front);
size = size-1;

}

/**
 * Remove all the elements from this Queue.
 * @ensure this.isEmpty()
 */
public void clear () {

size = 0;
front = 0;
rear = maxSize-1;

}

/**
 * A String representation of this Queue.
 */
public String toString () {

String s = "[";
if (size > 0) {

s = s + elements[front].toString();
int i;
for (i = front; i != rear; i = next(i))

s = s + ", " + elements[next(i)].toString();
}
s = s + "]";
return s;

}

/**
 * The next index, mod length of the array.
 */
private int next (int index) {

return (index+1) % elements.length;
}

}

Listing y.3 The class CircularQueue (cont’d)

y.4 Priority queues 13
y.4 Priority queues

Suppose there is an ordering on the component class of a container, and we want to
retrieve the items based on the ordering. The container contains instances of the class Stu-
dent, for example, and we want to retrieve Student’s in order of final grade. In such a situ-
ation, a priority queue is an appropriate structure to use.

A priority queue is a dispenser in which the current item is a largest item in the con-
tainer with respect to some given ordering. The ordering is called a priority, and a first
item with respect to the ordering is referred to as a highest priority item. We name the dis-
penser features highest, add, and remove, and give a specification in Listing y.4.

Listing y.4 The interface PriorityQueue

Interface PriorityQueue<Element>

public interface PriorityQueue<Element>
Dispenser adhering to a priority-out discipline.

Queries

public boolean isEmpty ()
This PriorityQueue contains no elements.

public boolean isFull ()
This PriorityQueue contains a maximum number of elements.

public Element highest ()
An element of this PriorityQueue with highest priority.

require:
!this.isEmpty()

ensure:
for each element e in this PriorityQueue

!this.priority().inOrder(e,this.highest())

public Order<Element> priority ()
The priority used to order this PriorityQueue.

continued

priority queue: a dispenser in which the current element is a largest container
element with respect to some given ordering.

14 Addendum yDispensers and dictionaries
y.4.1 PriorityQueue implementations

An obvious way to implement a priority queue is with the class OrderedList, introduced in
Section 14.3. Recall that an ordering is provided when an OrderedList is created, and the
elements on the list are maintained in increasing order. Otherwise, the features of an
OrderedList are similar to those of a List.

There are a number of different and very efficient approaches to implementing Prior-
ityQueues. A discussion of these structures, however, is beyond the scope of this text.

y.5 Dictionaries

A dictionary, sometimes called a key-value table, is a container in which elements are
accessed by key. We think of the entries in a dictionary as having two components, a key
and an associated value – a key-value pair. In a dictionary of the English language, for
instance, an English word is the key and the definition is the value. In a telephone direc-
tory, a name is the key and the telephone number is the value. When we use a dictionary,
we have a key and are interested in obtaining the associated value.

Commands

public void add (Element element)
Add the specified element to this PriorityQueue.

require:
!this.isFull()

ensure:
!this.isEmpty()

public void remove ()
Remove the element this.highest() from this PriorityQueue.

require:
!this.isEmpty()

public void clear ()
Remove all the elements from this PriorityQueue.

ensure:
this.isEmpty()

Listing y.4 The interface PriorityQueue (cont’d)

y.5 Dictionaries 15
We can also consider the key to be an attribute of the entry, rather than a separate
component. For instance, we can view the telephone directory as containing records that
consist of name, address, and telephone number. The key – the name – is simply one of the
record attributes. We adopt the former point of view, though, as it is more consistent with
standard Java library classes.

The features of a dictionary are similar to those of a dispenser. The fundamental dif-
ference is that a key must be provided to access or delete an item. A question that arises is
whether there can be several elements in the dictionary with the same key. We assume
keys are unique. That is, we assume there can be at most one element in the dictionary
with any given key. We give an elementary specification in Listing y.5.

We can build a straightforward implementation of a dictionary with a List whose ele-
ments are key-value pairs. The methods get and remove simply search the List to locate
the item with the given key. However, there are much better ways to implement dictionar-
ies. As with priority queues, a discussion of the implementing structures are beyond the
scope of the text.

Finally, we mention that the standard package java.util defines an interface Map
that serves as a superclass for dictionary variants.

Listing y.5 The interface Dictionary

Interface Dictionary<Key, Element>

public interface Dictionary<Key, Element>
Container in which elements are uniquely accessed by key.

Queries:

public boolean isEmpty ()
This Dictionary contains no entries.

public Element get (Key key)
The element of this Dictionary associated with the specified key. null if there
is no entry with the specified key.

continued

dictionary: a container in which the elements are accessed by key.

16 Addendum yDispensers and dictionaries
y.6 Summary

With this chapter we conclude an introductory overview of containers by briefly discuss-
ing the abstraction dispenser. We discussed the fundamental notion of a dispenser and its
principal variants, stacks, queues, and priority queues. We also considered dictionaries.
For each of these we presented a specification, and discussed elementary implementations
using existing list implementations such as BoundedList and LinkedList.

These last few chapters dealing with containers should be viewed as an introduction
to data structuring within the context of object orientation and the methodology used in
this text. Our intention has been to use these topics as a case study for presenting design
choices for class and library design, and also to suggest how the methodology might be
continued to subsequent topics.

EXERCISES

y.1 Complete a Stack implementation based on the class BoundedList.

y.2 Complete a Stack implementation based on the class LinkedList.

Commands:

public void add (Key key, Element value)
Add an entry with the specified key and value to this Dictionary. If this
Dictionary already contains an entry with the specified key, the value associ-
ated with this entry is replaced by the specified value.

ensure:
!this.isEmpty()

public void remove (Key key)
Remove the entry this.get(key) from this Dictionary. If this Dictio-
nary does not contain an entry with the specified key, this method does noth-
ing.

public void clear ()
Remove all the entries from this Dictionary.

ensure:
this.isEmpty()

Listing y.5 The interface Dictionary (cont’d)

 Glossary 17
y.3 Implement the class PriorityQueue.

y.4 Implement the class Dictionary.

y.5 Carefully read the specifications for the class java.util.Hashtable. Define an implementa-
tion of Dictionary based on this class.

y.6 A prefix integer expression can be defined to be either an integer, or two prefix integer
expressions preceded by a binary operator:

prefixIntegerExpression =
integer or
binaryOperator prefixIntegerExpression prefixIntegerExpression

For instance, the following are prefix integer expressions:

1 2 + 1 2 * + 1 2 4 * + 1 2 + 1 2

To evaluate an expression, evaluate the subexpressions and then apply the operator. For
instance,

* + 1 2 + 1 2 ⇒ * 3 + 1 2 ⇒ * 3 3 ⇒ 9

Class Operator models binary operators, and class Operand modes integers. Both are sub-
classes of class Token.

A TokenList can now be interpreted as a prefix integer expression.

Define classes Operator, Operand, and Token. Implement a method that uses a stack to
evaluate prefix integer expressions.

GLOSSARY

dictionary: a container in which elements are accessed by key. Also known as a key-value
table.

dispenser: a container that allows access and removal of elements in a predetermined way.
A current element is distinguished as the element that can be accessed and removed.

priority queue: a dispenser in which the current element is the largest item in the container
with respect to some given ordering.

queue: a dispenser in which the current element is the container element least recently
added to the container.

stack: a dispenser in which the current element is the container element most recently
added to the container.

18 Addendum yDispensers and dictionaries

	addendum y Dispensers and dictionaries
	Figure y.1 A gumball dispenser.

	y.1 Dispensers
	y.2 Stacks
	Listing y.1 The interface Stack

	Interface Stack<Element>
	public interface Stack<Element>
	Dispenser adhering to a last-in/first-out discipline.

	Queries
	public boolean isEmpty ()
	This Stack contains no elements.

	public boolean isFull ()
	This Stack contains a maximum number of elements.

	public Element top ()
	The element of this Stack that was most recently added.
	require: !this.isEmpty()

	Commands
	public void push (Element element)
	Add the specified element to this Stack.
	require: !this.isFull() element != null
	ensure: !this.isEmpty()

	public void pop ()
	Remove the element of this Stack that was most recently added.
	require: !this.isEmpty()

	public void clear ()
	Remove all the elements from this Stack.
	ensure: this.isEmpty()

	y.2.1 Stack implementations
	Figure y.2 An adapter wrapping the class LinkedList.
	Figure y.3 An adapter extending the class LinkedList.

	y.3 Queues
	y.3.1 Queue implementations
	Linked implementations
	Listing y.2 The interface Queue

	Interface Queue<Element>
	public interface Queue<Element>
	Dispenser adhering to a first-in/first-out discipline.

	Queries
	public boolean isEmpty ()
	This Queue contains no elements.

	public boolean isFull ()
	This Queue contains a maximum number of elements.

	public Element front ()
	The element of this Queue that was least recently added.
	require: !this.isEmpty()

	Commands
	public void append (Element element)
	Add the specified element to this Queue.
	require: !this.isFull() element != null
	ensure: !this.isEmpty()

	public void remove ()
	Remove the element of this Queue that was least recently added.
	require: !this.isEmpty()

	public void clear ()
	Remove all the elements from this Queue.
	ensure: this.isEmpty()

	Circular arrays
	Figure y.4 A circular array of size n.
	Figure y.5 Empty and full Queues, implemented with a circular array.
	Listing y.3 The class CircularQueue (cont’d)
	/**
	* Circular array implementation of the interface Queue
	*/
	class CircularQueue<Element> implements Queue<Element> {
	private Object[] elements;
	private int front; // index of the front Queue item
	private int rear; // index of the rear Queue item
	private int size; // size of the Queue
	/**
	* Create a CircularQueue with specified maximum size.
	* @require maxSize >= 0
	* @ensure this.isEmpty()
	*/
	public CircularQueue (int maxSize) {
	elements = new Object[maxSize];
	size = 0;
	front = 0;
	rear = maxSize-1;
	}
	/**
	* The maximum size of this Queue.
	* @ensure this.maxSize() >= 0
	*/
	public int maxSize () {
	return elements.length;
	}
	continued
	/**
	* The number of elements in this Queue.
	* @ensure this.size() >= 0 &&
	* this.size() <= this.maxSize()
	*/
	public int size () {
	return this.size;
	}
	/**
	* This Queue contains no elements.
	*/
	public boolean isEmpty () {
	return this.size == 0;
	}
	/**
	* This Queue contains a maximum number of elements.
	*/
	public boolean isFull () {
	return this.size == elements.length;
	}
	/**
	* The element of this Queue least recently added.
	* @require !this.isEmpty()
	*/
	public Element front () {
	return (Element)elements[front];
	}
	/**
	* Add a new element to this Queue.
	* @require element != null && !this.isFull()
	* @ensure !this.isEmpty()
	*/
	public void append (Element element) {
	rear = next(rear);
	elements[rear] = element;
	size = size+1;
	}
	continued
	/**
	* Remove the element of this Queue that was least
	* recently added.
	* @require !this.isEmpty()
	*/
	public void remove () {
	front = next(front);
	size = size-1;
	}
	/**
	* Remove all the elements from this Queue.
	* @ensure this.isEmpty()
	*/
	public void clear () {
	size = 0;
	front = 0;
	rear = maxSize-1;
	}
	/**
	* A String representation of this Queue.
	*/
	public String toString () {
	String s = "[";
	if (size > 0) {
	s = s + elements[front].toString();
	int i;
	for (i = front; i != rear; i = next(i))
	s = s + ", " + elements[next(i)].toString();
	}
	s = s + "]";
	return s;
	}
	/**
	* The next index, mod length of the array.
	*/
	private int next (int index) {
	return (index+1) % elements.length;
	}
	}

	y.4 Priority queues
	Listing y.4 The interface PriorityQueue

	Interface PriorityQueue<Element>
	public interface PriorityQueue<Element>
	Dispenser adhering to a priority-out discipline.

	Queries
	public boolean isEmpty ()
	This PriorityQueue contains no elements.

	public boolean isFull ()
	This PriorityQueue contains a maximum number of elements.

	public Element highest ()
	An element of this PriorityQueue with highest priority.
	require: !this.isEmpty()
	ensure: for each element e in this PriorityQueue !this.priority().inOrder(e,this.highest())

	public Order<Element> priority ()
	The priority used to order this PriorityQueue.
	continued

	Commands
	public void add (Element element)
	Add the specified element to this PriorityQueue.
	require: !this.isFull()
	ensure: !this.isEmpty()

	public void remove ()
	Remove the element this.highest() from this PriorityQueue.
	require: !this.isEmpty()

	public void clear ()
	Remove all the elements from this PriorityQueue.
	ensure: this.isEmpty()

	y.4.1 PriorityQueue implementations
	y.5 Dictionaries
	Listing y.5 The interface Dictionary

	Interface Dictionary<Key, Element>
	public interface Dictionary<Key, Element>
	Container in which elements are uniquely accessed by key.

	Queries:
	public boolean isEmpty ()
	This Dictionary contains no entries.

	public Element get (Key key)
	The element of this Dictionary associated with the specified key. null if there is no entry with the specified key.
	continued

	Commands:
	public void add (Key key, Element value)
	Add an entry with the specified key and value to this Dictionary. If this Dictionary already contains an entry with the specified key, the value associ ated with this entry is replaced by the specified value.
	ensure: !this.isEmpty()

	public void remove (Key key)
	Remove the entry this.get(key) from this Dictionary. If this Dictio nary does not contain an entry with the specified key, this method does noth ing.

	public void clear ()
	Remove all the entries from this Dictionary.
	ensure: this.isEmpty()

	y.6 Summary
	Exercises
	y.1 Complete a Stack implementation based on the class BoundedList.
	y.2 Complete a Stack implementation based on the class LinkedList.
	y.3 Implement the class PriorityQueue.
	y.4 Implement the class Dictionary.
	y.5 Carefully read the specifications for the class java.util.Hashtable. Define an implementa tion of Dictionary based on this class.
	y.6 A prefix integer expression can be defined to be either an integer, or two prefix integer expressions preceded by a binary operator:

	Glossary

