
ADDENDUM X Computational
complexity

We interrupt our study of object-oriented design for a brief, informal look at the important
topic of algorithmic efficiency. Measuring the efficiency of a program is in general a com-
plicated issue. In this chapter, we try to get a handle on determining how the time required
for a program to compute a solution depends on the algorithm chosen. We introduce a
commonly used measure, computational complexity, that allows us to compare the effi-
ciency of algorithms in a very fundamental way. We will apply this measure to algorithms
developed in subsequent chapters.

After defining the measure, we apply it to some simple algorithms, and conclude with
an example that develops three different methods for solving the same problem. These
algorithms have dramatically different complexities, and should give us considerable
insight into the effects of algorithm choice on program execution time.

x.1 Measuring program efficiency

When we speak of the efficiency or cost of a program, there are many issues we might be
considering. We might be concerned with the time it takes for the program to produce a
result, the amount of memory or other system resources required by the program, the pro-
grammer effort required to maintain the program, and so on. Here we specifically limit our
attention to the execution time required for a program to solve a problem.

There are, of course, many factors that affect execution time:

• the hardware – the type and speed of the processor, size and speed of memory, disk trans-
fer rate, network speed, etc.

• the operating system;

• the system environment – number of active processes, etc.

• the programming language and compiler;

• the run-time system or interpreter;

• the algorithms that comprise the program;

• the data on which the program is run.
1

2 Addendum xComputational complexity
We want to isolate the effects on execution time due to algorithm and data, ignoring hard-
ware speed, operating system, etc. To this end, we define a measure of program efficiency
called computational complexity or time complexity. This a coarse but extremely important
gauge of a program’s execution time. While the definition may seem less than intuitive at
first, the concept has proven to be of considerable benefit in comparing and evaluating
problem solutions.

We will not attempt a complete or rigorous treatment. We give some fundamental def-
initions, and apply them rather informally to a few examples. Our intention is simply to
gain some familiarity with the notions so that we can infer the time-cost of algorithms
examined in subsequent chapters.

x.2 Time complexity for a method.

Since complexity is an algorithmic notion, we limit our attention to determining the
complexity of a method. We want to determine the time-cost of a method that solves a par-
ticular problem.

First of all, we assume that each instance of a problem has some inherent “size,” and
that the execution time required by a method to solve a problem instance depends on its
size. For example, if we are considering one of the sort algorithms of Chapter 14, the prob-
lem size is the length of the list to be sorted. We expect that the time required to sort the
list will depend on the length of the list. If we have a method that determines whether or
not a particular integer is prime, the problem size is the size of the integer. We expect the
method to take longer to determine whether 9907 is prime than to determine whether 7 is
prime.

Of course, a method may require a different amount of time to solve two different
problem instances of the same size. For example, a sort method might be able to sort a list
of 100 items that is already nearly sorted more quickly than it can sort a list of 100 items
that is thoroughly scrambled. Though we are sometimes interested in an “average” time
required by a method to solve a problem of a given size, for the most part we want to know
the worst case behavior of an algorithm. That is, we want the maximum time-cost over all
problems of a given size.

It would seem natural to compute the time-cost of a method in units of time, such as
seconds, microseconds, etc. But the actual clock time required by a method clearly
depends on a number of factors other than the algorithm. Rather than using units of time,
we’ll measure the time-cost by counting the number of primitive steps the algorithm per-
forms in solving the problem. This measure is easier to calculate, and will be perfectly
adequate for comparing the relative time cost of various algorithms. In fact, we don’t even
care to specify exactly what a “primitive step” is, except to say that it takes a fixed amount
of time to perform regardless of the problem. For instance, we can consider it to be a sin-
gle instruction executed by the Java interpreter.

We now define the time-cost or time complexity of a method M to be a non-decreasing
function tM from the natural numbers N (i.e., {0, 1, 2, … }) to the positive reals R+

x.3 Comparing method costs 3
tM : N → R+[

such that tM(n) is the maximum number of steps for method M to solve a problem of size
n, over all problems of size n. For example, if M is the selection sort of Chapter 14,
tM(100) is the maximum number of steps required by the method to sort a list of 100 ele-
ments.

x.3 Comparing method costs

We want to compare different algorithms for solving a problem according to their time
efficiency. This amounts to comparing their corresponding cost functions. How should we
do this? The following approach to comparing cost functions has proven most useful for
our purposes. The definition may not seem entirely intuitive, but with a little experience it
will become familiar.

Note the relation “ ” defined in this section is not standard notation. It is given here
to simplify the definitions of the standard class constructors Ο, Ω, and Θ given in the next
section.

Let f and g be non-decreasing functions from the natural numbers to the positive reals,

f, g : N → R+

We say f is Ο-dominated by g, and write f g, provided

there is a positive integer n0, and
there is a positive real c, such that
for all n ≥ n0, f(n) ≤ c⋅g(n).

This says that f is Ο-dominated by g if some multiple of g dominates f for all large integers,
and is illustrated graphically in Figure x.1.

Figure x.1 f is Ο-dominated by g.

n0

f

c⋅g

4 Addendum xComputational complexity
Now let’s see how to use this definition to compare methods. Suppose M and N are
two different sort methods (selection sort and bubble sort, for instance), with time-cost
functions tM and tN respectively. What does it mean to show that tM tN? First, we can
throw out as many specific problems as we want by choosing n0 sufficiently large. For
instance, if we choose n0 to be 100, we only look at lists that have more than 100 elements.
It doesn’t matter how they compare on smaller lists. Next, we can “slow down” N as much
as we want by choosing an appropriate value of c. For example, if we choose c to be 10,
we compare tM with 10⋅tN. We can imagine running method N on a machine that is 10
times slower than the machine M is running on. Under these conditions, M must perform
as well as N.

Note that we need only demonstrate that the third line of the definition holds for one
n0 and one c. But tM(n) must be less than or equal to c⋅tN(n) for all n ≥ n0.

This may seem like a very weak condition. In fact, it may seem that any method can
be made to run faster than any other if we slow the second down enough! To get a better
handle on the definition, consider what it means if tM is not Ο-dominated by tM. In this
case, no matter how much we slow down the machine running N, we can always find arbi-
trarily large problems for which N will run faster than M. Clearly, M is not as efficient as N
in some very fundamental way.

We make a few observations about the relation , without proof. In the following, we
assume f, g, h, f ’, and g’ are non-decreasing functions from the natural numbers to the pos-
itive reals.

• The relation is reflexive: that is, for any function f, f f.

• The relation is transitive: that is, for functions f, g, and h, f g and g h imply f h.

• The relation is not anti-symmetric: there are functions f and g such that f g and g f, but
f ≠ g.

• The relation is not total: there are functions f and g such that neither f g nor g f.

If f g and g f, we say f and g are said to have the same magnitude, and we write
f ≡ g.

If f g but it is not the case that g f, we write f g.
(If exp(n) is an expression whose value depends on n, we use exp(n) to denote the

function f defined by f(n) = exp(n). For instance, we denote the function f defined by f(n) =
n2 simply as n2, and denote the constant function f(n) = 1 as 1.)

The pointwise sum, f+g, pointwise product, f⋅g, and pointwise max, max(f, g) of two
functions f and g are defined as follows.

[f + g](n) = f(n) + g(n))
[f ⋅ g](n) = f(n)⋅g(n)
[max(f, g)](n) = max(f(n), g(n))

The following items are easy to show.

<x.1> If c1 and c2 are positive real constants, then f ≡ c1⋅f + c2.

<x.2> If f is a polynomial function, f(n) = ckn
k + ck-1nk-1 + … + c0, where ck > 0, then

x.4 Complexity classes. 5
f ≡ nk.

<x.3> If f g and f ’ g’, then f ⋅ f ’ g ⋅ g’.

<x.4> If f g and f ’ g’, then f + f ’ max(g, g’). Furthermore, f + g ≡ max(f, g).

<x.5> If a and b are > 1, logan ≡ logbn.1

<x.6> 1 logan n n⋅logan n2 n3 n4 … 2n.

x.4 Complexity classes.

Suppose f is a non-decreasing function from the natural numbers to the positive reals. We
define the following sets of functions:

Ο(f) is the set of functions that are Ο-dominated by f. That is,

Ο(f) = { g | g f }.

Ω(f) is the set of functions that Ο-dominate f. That is,

Ω(f) = { g | f g }.

Θ(f) is the set of functions that have the same magnitude as f. That is,

Θ(f) = { g | g ≡ f } = { g | f g and g f } = Ο(f) ∩ Ω(f).

Ο(f) is pronounced “oh of f” or “big oh of f.” Ω(f) is “omega of f,” and Θ(f) is “theta
of f.”

If M is a method with time-cost tM, then we say “M is in Ο(f)”, or simply “M is Ο(f)”,
if tM ∈ Ο(f). Similar statements are made for Ω and Θ.

If M is a method with complexity tM(n) = c, for some constant c, then M is Θ(1) and
we say M is constant. If M is Θ(n), we say that M is linear. If M is Θ(n2), M is quadratic.
If M is not Ο(nk) for any k, then M is exponential. Most exponential methods encountered
in practice are Ω(2n). If a method is linear, we expect the run-time to increase proportion-
ally with the size of the input; if it’s quadratic, we expect run-time to increase as the square
of the input; and so on.

In subsequent chapters, we categorize the methods in terms of the hierarchy shown in
<x.6>. That is, we will categorize methods as being Θ(1), or Θ(log n), or Θ(n), etc.
Table 1 shows the values of a few complexity functions for several values of n.

To get some idea of the implications, Table 2 gives the number of microseconds in
several time units. If we are counting steps that take a microsecond, a method with com-
plexity n3 will take about 17 minutes for a problem of size 1,000, and over 300 centuries
for a problem of size 1,000,000. The implications of this are clear. If a method is to be
used on large cases, it almost surely needs to be quadratic or better. A method that is expo-
nential can be applied in practice only to very small problem instances.

1. Of course, we fudge a bit with logrithmic functions and eliminate 0 from the domain.

6 Addendum xComputational complexity
x.4.1 Complexity of a problem.

To this point, our discussion has concerned the complexity of a method. Sometimes we are
interested in the complexity of a problem. That is, we want to know the complexity of the
best possible method for solving the problem. If we say that the complexity of a problem
is t, we mean that every method for solving the problem is Ω(t), and some method is Θ(t).
That is, the best possible method for solving the problem is Θ(t). For instance, it is known
that the complexity of the general sorting problem using comparison is n⋅log n. That is,
there are methods that can sort any list of length n with n⋅log n time-cost, and it is not pos-
sible to write a method capable of sorting every list of length n and having time-cost better
than n⋅log n.

Some problems are known to be exponential, and are called intractable. (Some prob-
lems have no algorithmic solution at all, and are called unsolvable.)

Determining the complexity of a method involves analyzing the method and is often
straightforward. Determining the complexity of a problem is generally much more diffi-
cult, since it involves proving something about all possible methods for solving the prob-
lem.

n log2n n⋅log2n n2 n3 2n

10 3.32 33.2 100 1,000 1,024

100 6.64 664 10,000 1,000,000 1.27×1030

1,000 9.97 9,966 1,000,000 109 1.07×10301

1,000,000 19.93 19,931,569 1012 1018 10301030

Table 1: Values of some complexity functions.

unit: number of
µsecs:

second 106

minute 6×107

hour 3.6×109

day 8.64×1010

year 3.15×1013

century 3.15×1015

Table 2: microseconds per unit of time.

x.4 Complexity classes. 7
x.4.2 Determining the complexity of a method.

We now sketch a few ideas on analyzing methods to determine their time-cost. As we have
said, we do not intend to give a thorough, formal presentation.

Methods encountered in practice generally have a cost that fits into the hierarchy of
<x.6>. Since complexity is a function of problem size, any method that in the worst case
must examine all of its data is at least linear. For instance, a method that finds the largest
element on an arbitrary list must examine each element of the list. If the list has n ele-
ments, at least n steps are required to examine the elements. A method with constant time
complexity, Θ(1), needs to use only a fixed amount of its data. For instance, a method to
remove the first element of a list might require the same number of steps to complete
regardless of the length of the list. Methods with complexity better than linear typically
require that the problem data have some specific organization or structure. For instance,
the binary search algorithm seen in Section 14.4 is Θ(log n), but requires the list to be
sorted. It is this property of the list that enables the method to find an item without exam-
ining each list element.

To determine the time-cost of a method, we must count the steps performed in the
worst case. Considering the possible kinds of statements that comprise a method, we
observe the following.

• A simple, elementary statement like a simple assignment, requires a constant number of
steps. Similarly, evaluation of a simple expression requires a constant number of steps.

• To determine the number of steps required by a statement that invokes a method, we must
determine the number of steps required by the method that is invoked.

• The worst case number of steps required by a conditional such as an if-then-else is the
maximum of the number of steps required by each alternative. For instance, if statements
A and B have time-costs tA and tB respectively, then

if (simpleCondition)
A

else
B

has time-cost max(tA, tB).

• To determine the number of steps required by a sequence of statements, we sum the num-
ber of steps required by each statement. Here, <x.4> simplifies our task considerably. For
example, if statements A, B, and C have time-costs tA, tB, and tC respectively, then

A; B; C;

has time-cost tA + tB + tC ≡ max(tA, tB, tC).

• To determine the time-cost of a loop, we must determine the number of steps required by
the loop body and multiply times the number of times the loop body is executed.

• To determine the number of steps required by a recursive call, we must determine the
depth of the recursion.

8 Addendum xComputational complexity
A little consideration of the above points should make it clear that loops and recursive
calls are the syntactic elements likely to determine the complexity of a method.

An example containing a loop:

As a first example, consider the method to compute the average final grade of a list of Stu-
dents, as seen in Section 12.5. The problem size here is rather clearly the length of the
argument list, students.

public double average (List<Student> students) {
int i;
int sum;
int count;
count = students.size();
sum = 0;
i = 0;
while (i < count) {

sum = sum + students.get(i).finalExam();
i = i+1;

}
return (double)sum / (double)count;

}

If we assume that the method size requires constant time independent of the length
of the list, then all of the statements in the method except for the while-loop contribute
only a constant amount to the time-cost. Clearly the complexity of the method depends on
the loop. If we further assume that the Student method finalExam and the StudentList
method get are constant, then the body of the loop requires constant time to execute, and
we need only count the number of times the body of the loop is performed. But the body
of the loop is performed once for each element of the list. If the length of the list stu-
dents is n, the loop body is done n times. (The test i < count is actually done n+1
times, but this does not change the complexity of the method.) Thus the method is linear,
Θ(n).

Now suppose that the method get is linear in its argument: in particular, suppose that
get(i) requires ic1+c0 steps to complete, where c1 and c0 are constants. The body of the
loop is no longer constant, and we need to do a little more work to determine the complex-
ity of the method.

We can list the number of steps required by get(i) for each value of i as follows:

value of i: 0 1 2 … n-1
steps of get(i): c0 c1+c0 2c1+c0 … (n-1)c1+c0

We sum the n terms to determine the total number of steps required by the invocations of
get.

ic1 c0+()
i 0=

n 1–

∑ nc0 c1 i
i 1=

n 1–

∑+=

x.4 Complexity classes. 9
It is easy to see by induction that

(I)

Thus the total number of steps required by invocations of get is

and the method is quadratic.
To simplify calculations, we assume for the remainder of this chapter that List meth-

ods such as size and get require constant time.

An example containing nested loops:

As a second example we consider a method containing a pair of nested loops: a method
that will determine if a List contains duplicate elements. (This is similar to the method that
removed duplicate elements from a list presented in Section 12.5.5.) We can probably
guess that a method containing nested loops, each of which depends on problem size, will
be at least quadratic. The method is defined as follows.

boolean hasDuplicates (List<Element> list) {
int i;
int j;
int n;
boolean found;
n = list.size();
found = false;
for (i = 0; i < n-1 && !found; i = i+1)

for (j = i+1; j < n && !found; j = j+1)
found = list.get(i).equals(list.get(j));

return found;
}

We consider the case where the list has no duplicates. This case requires the longest
execution time, since the method must examine every pair of elements.

The outer loop is performed n-1 times, with i successively taking on the values 0, 1, 2,
…, n-2. The number of iterations of the inner loop depends on i:

value of i: 0 1 2 … n-3 n-2
iterations of the
inner loop n-1 n-2 n-3 … 2 1

To compute the number of times the assignment

found = list.get(i).equals(list.get(j));

is done, we must compute the sum:

i
i 1=

k

∑ k k 1+()
2

-------------------- 1
2
--- k

2
k+()==

nc0
1
2
---c1 n

2
n–()+

10 Addendum xComputational complexity
1 + 2 + … + (n-3) + (n-2) + (n-1).

From equation (I), this is to equal to . Thus the method is Θ(n2).

x.5 An example: three methods

In this section, we analyze three different methods for solving the same problem. This will
give us a good idea of what is involved in analyzing both iterative and recursive methods.
The problem is based on [Weiss 92].

Define a sublist of a list l to be a list containing 0 or more contiguous elements of l.
For instance, the list (1, 2, 3) has seven sublists: the empty sublist; three sublists of length
1: (1), (2), and (3); two sublists of length 2: (1, 2) and (2, 3); one sublist of length 3: (1, 2,
3).

The problem we want to solve is this: given a list of integers, find the maximum sum
of the elements of a sublist. For example, the following lists have sublists with maximum
sum as shown.

list sublist with max sum
max sum

(-2, 4, -3, 5, 3, -5, 1) (4, -3, 5, 3) 9
(2, 4, 5) (2, 4, 5) 11
(-1, -2, 3) (3) 3
(-1, -2, -3) () 0

Note that the sum of the elements of the empty list is 0. Thus if a list contains only
negative integers, the empty sublist is the sublist with maximum sum. Furthermore, any
method to solve this problem must be at least linear, since each element of the list must be
examined.

We specify the method we want to write as follows.

int maxSublistSum (List<Integer> list)
The maximum sum of a sublist of the given list.

if list.get(i).intValue() > 0 for some index i, then
max { list.get(i).intValue() + … +

list.get(j).intValue() |
0 <= i <= j < list.size()

}
else

0

The problem is admittedly artificial. But it admits several easy to understand and quite
distinct solutions. We consider three methods for solving the problem, each with different
time-cost.

n
2

n–
2

x.5 An example: three methods 11
x.5.1 A naive method.

The first method we consider uses a straightforward, “brute force” approach. Simply sum
the elements of each possible sublist, and remember the maximum. The method is given in
Listing x.1.

The outer index i determines the starting point of the sublist, and the second index j
determines the ending point. The inner loop then sums sum the elements
list.get(i).intValue() + … + list.get(j).intValue().

Since we have three nested loops, each of which depends on the length of the list, we
expect the method to be Θ(n3). We’ll do the arithmetic this once to verify our conjecture.

The body of the inner loop (k-loop) is executed the most often. To determine the com-
plexity of the method, we count the number of times this is done.

The outer loop is done n times, with i taking on the values 0, 2, …, n-1. For each
value of i, j iterates through the values i through n-1. For each value of i and j, k iter-
ates from i through j. For each value of k, the body of the inner loop is done once. Thus
we must compute the sum:

Listing x.1 A naive approach

int maxSublistSum (List<Integer> list) {
int n = list.size();
int maxSum; // max of all values of sum
int sum; // list.getInt(i) + … + list.getInt(j)
int i; // starting index of sublist being summed
int j; // ending index of sublist being summed
int k; // index of summand, i <= k <= j

maxSum = 0;
for (i = 0; i < n; i = i+1)

for (j = i; j < n; j = j+1) {
// compute list.get(i).intValue() + … +
// list.get(j).intValue()
sum = 0;
for (k = i; k <= j; k = k+1)

sum = sum + list.get(k).intValue();
if (sum > maxSum)

maxSum = sum;
}

return maxSum;
}

12 Addendum xComputational complexity
This requires just a little arithmetic, given equation (I) on page 9 and the following:

(II)

The inner summand obviously equals the number of integers k such that i ≤ k ≤

j; i.e., equals j-i+1.
Now moving to the middle sum,

;

substituting j = i, i+1, …, n-1, we get

, by equation (I) above;

, after expansion.

Finally, using equations (I) and (II) and a little algebra, we compute:

Is this method satisfactory? It is certainly easy to understand and to write correctly. If
we intend only to use it a few times on relatively small lists, it is adequate. It is not critical
to spend time trying to find a better approach. But if the method is part of critical operating
system code, or if we want to use it for large lists, we need something better.

1
k i=

j

∑
j i=

n 1–

∑
i 0=

n 1–

∑

i
2

i 1=

k

∑ k k 1+() 2k 1+()
6

---=

1
k i=

j

∑

1
k i=

j

∑
j i=

n 1–

∑ j i– 1+()
j i=

n 1–

∑=

1 2 … n i–()+ + +=

n i– 1+() n i–()
2

--=

1
2
---i

2
n 1

2
---+

 i–
1
2
--- n

2
n+()+=

1
k i=

j

∑
j i=

n 1–

∑
i 0=

n 1–

∑ 1
2
---i

2
n 1

2
---+

 i–
1
2
--- n

2
n+()+

i 0=

n 1–

∑=

1
2
--- i

2

i 0=

n 1–

∑ n 1
2
---+

 i
i 0=

n 1–

∑ 1
2
--- n

2
n+() 1

i 0=

n 1–

∑+–=

1
2
--- n

2
n–() 2n 1–()

6

 n 1
2
---+

 n n 1–()
2

 1

2
--- n

2
n+()n+–=

1
6
---n

3 1
2
---n

2 1
3
---n+ +=

x.5 An example: three methods 13
It is relatively straightforward to improve this method to Θ(n2) by summing in the
second loop and eliminating the third. We’ll leave this as an exercise, and look at two
rather different approaches.

x.5.2 A recursive method

The next method we consider uses a recursive “divide and conquer” approach. Lists of
length 0 and 1 are obvious base cases. If we have a longer list, we divide it in half and con-
sider the possible cases. For the discussion, assume the list is (x0, …, xn-1) with left half
(x0, …, xmid) and right half (xmid+1, …, xn-1):

There are three possible cases:

1. the sublist with the max sum is in the left half of the list: i.e., in (x0, …, xmid);

2. the sublist with the max sum is in the right half of the list: i.e., in (xmid+1, …, xn-1);

3. the sublist with max sum “overlaps” the middle of the list: in particular, it includes
both xmid and xmid+1.

As is commonly the case with recursive methods, we write an auxiliary method that
takes as arguments the starting and ending indexes of the portion of the list to consider:

private int maxSublistSum (List<Integer> list,
int first, int last)

The maximum sum of a sublist in the given range. That is, the maximum
sum of a sublist of (list.get(first), …, list.get(last)).

require:
0 <= first <= last < list.size()

The principle method handles the empty list explicitly, and otherwise calls the auxil-
iary method:

int maxSublistSum (List<Integer> list) {
if (list.size() == 0)

return 0;
else

return maxSublistSum(list,0,list.size()-1);
}

The auxiliary method cannot be called with an empty range, since first <= last
is required. The base case of a single element is explicitly handled. If there is more than
one element, the maximum sums of sublists in the left and right half are recursively
obtained, and the maximum sum of a sublist that overlaps the middle is computed.

x0 … xmid xmid+1 … xn-1

14 Addendum xComputational complexity
To determine the maximum sum of a sublist overlapping the middle, the maximum
sum of a sublist ending with xmid, and the maximum sum of a sublist beginning with
xmid+1 are computed and then added.

The largest of the three values – maximum sum of sublist in the left half, maximum
sum of sublist in the right half, and maximum sum of a sublist that overlaps both halves –
is then returned. The method is shown in Listing x.2.

This method is much more involved than the previous, and care must be taken to
ensure correctness. For instance, we must make sure that preconditions are satisfied for
each of the recursive calls.

The analysis of this recursive method is a little different from those that we’ve looked
at previously. We give a very informal analysis.

The complexity of the method is clearly the complexity of the auxiliary method. Let t
be the time-cost function of the recursive auxiliary method. If there is only one element to
consider, the method requires a fixed amount of time which we’ll call c0.

t(1) = c0 (1)

If there are n > 1 elements to consider, the method twice recursively calls itself, with
half as many elements each time:

t(n) = 2⋅t(n/2) + …

It then performs two loops, iterating each essentially n/2 times. If we let c1 be the time
required for an iteration, we have:

t(n) = 2⋅t(n/2) + c1⋅n + …

Finally, there are a number of other steps requiring constant time independent of n.
Call this time c2:

t(n) = 2⋅t(n/2) + c1⋅n + c2 (2)

An equation like (2) that describes a function at one point in terms of its value at
another point is called a recurrence relation. Recurrence relations are often the key to ana-
lyzing recursive methods.

If we substitute n/2 for n in (2), we get:

t(n/2) = 2⋅t(n/4) + c1⋅(n/2) + c2 (3)

Substituting the right side of (3) for t(n/2) in (2), we have:

t(n) = 2⋅(2⋅t(n/4) + c1⋅(n/2) + c2) + c1⋅n + c2

= 4⋅t(n/4) + 2⋅c1⋅n + 3⋅c2 (4)

Repeating the process for n/4 gives:

t(n/4) = 2⋅t(n/8) + c1⋅(n/4) + c2

and from (4):

t(n) = 8⋅t(n/8) + 3⋅c1⋅n + 7⋅c2

It is not hard to show that this generalizes to

t(n) = 2k⋅t(n/2k) + k⋅c1⋅n + (2k-1)⋅c2

x.5 An example: three methods 15
Listing x.2 A divide-and-conquer approach

/*
 * @require 0 <= first <= last < list.size()
 */
private int maxSublistSum (List<Integer> list, int first,

int last) {
int maxSum;// return value
int mid = (first + last)/2;

// index of middle element;
// first <= mid <= last

int maxLeftSum;
// maxSublistSum of left half of list: i.e., of
// (list.get(first), …, list.get(mid))

int maxRightSum;
// maxSublistSum of right half of l: i.e., of
// (list.get(mid+1), …, list.get(last))

int maxMidSum;
// max sum of a sublist containing both
// list.get(mid) and list.get(mid+1)

int maxEndMid;
// max sum of a sublist ending with list.get(mid)

int maxStartMid;
// max sum of a sublist starting with list.get(mid+1)

int endMidSum;
// list.get(i).valueOf()+…+list.get(mid).valueOf()

int startMidSum;
// list.get(mid+1).valueOf()+…+list.get(i).valueOf()

int i; // index for summing

if (first == last)
if (list.get(first).valueOf() < 0)

return 0;
else

return list.get(first).valueOf();

else {
// first <= mid < last
maxLeftSum = maxSubList(list, first, mid);
maxRightSum = maxSubList(list, mid+1, last);

continued

16 Addendum xComputational complexity
We can solve the equation if we can determine t(n/2k) for some particular k. But we
know

t(1) = c0,

and n/2k = 1 when n = 2k, or when k = log2n. Thus for k = log2n, n/2k = 1 and

t(n) = 2k⋅t(1) + k⋅c1⋅n + (2k-1)⋅c2

= 2log
2
n⋅c0 + log2n⋅c1⋅n + (2log

2
n-1)⋅c2

= n⋅c0 + c1⋅n⋅log2n + (n-1)⋅c2

and the complexity of the method is Θ(n⋅log2n). This is a considerable improvement over
the previous method, but we can do even better.

maxEndMid = list.get(mid).valueOf();
endMidSum = list.get(mid).valueOf();
for (i = mid-1; i >= first; i = i-1) {

endMidSum = endMidSum + list.get(i).valueOf();
if (endMidSum > maxEndMid)

maxEndMid = endMidSum;
}

maxStartMid = list.get(mid+1).valueOf();
startMidSum = list.get(mid+1).valueOf();
for (i = mid+2; i <= last; i = i+1) {

startMidSum = startMidSum + list.get(i).valueOf();
if (startMidSum > maxStartMid)

maxStartMid = startMidSum;
}

maxMidSum = maxEndMid + maxStartMid;

maxSum = maxMidSum;
if (maxLeftSum > maxSum)

maxSum = maxLeftSum;
if (maxRightSum > maxSum)

maxSum = maxRightSum;

return maxSum;
}

}

Listing x.2 A divide-and-conquer approach (cont’d)

x.5 An example: three methods 17
x.5.3 An iterative method

Finally, we consider an iterative approach. Suppose we have examined the first i elements
of the list, (x0, …, xi-1), and have found the sublist with maximum sum in the first i ele-
ments. We now look at the i+1st element.

There are two possibilities for the maximum sum sublist of the first i+1 elements:

1. it doesn’t include xi, in which case it is the same as the maximum sum sublist of the
first i elements; or

2. it includes xi.

If we look at the maximum sum sublist ending with xi, there are again two cases:

1. it consists only of xi; or

2. it includes xi-1, in which case it is xi appended to the maximum sum sublist ending
with xi-1.

It is, in fact, rather easy to distinguish these two cases. Let li-1 denote the maximum
sum sublist ending with xi-1, li the maximum sum sublist ending with xi. If li-1 has a nega-
tive sum, then li consists of just xi. Otherwise, li is li-1 with xi appended.

This suggests that we write a method that iterates through the list, keeping track of the
maximum sublist sum, and the maximum sum of a sublist ending with the current element.
The method is shown in Listing x.3. The method is Θ(n), which is the best we can hope
for. It is also rather straightforward, and easy to understand.

x0 … xi-1 xi

x0 … xi-1 xi

{ li-1 { li

x0 … xi-1 xi

{ li-1

li

{
li-1 has a negative sum:

li-1 has a positive sum:

18 Addendum xComputational complexity
x.6 Summary

In this chapter, we considered a fundamental measure of algorithm efficiency called time
complexity. We will use this measure to evaluate algorithms introduced in subsequent
chapters.

The time-cost of a method is a function that specifies the maximum number of steps
required by the method to solve a problem of a specified size. Time-cost functions can be
compared with a relation Ο-dominated by. If f and g are time-cost functions, f is Ο-domi-
nated by g when there exits positive numbers n0 and c such that f(n) ≤ c⋅g(n) for all n ≥ n0.
If f is Ο-dominated by g, then f ∈ Ο(g) and g ∈ Ω(f). If f ∈ Ο(g) and f ∈ Ω(g), then f and
g have the same magnitude, and f ∈ Θ(g). Comparing the time-cost of a method to a col-
lection of standard functions enables us to categorize efficiency of the method in a very
fundamental way.

We saw how to compute the time-cost for some simple examples, and noted that loops
and recursive invocations played a principle role in determining the complexity of a
method. Finally, we did a case study in which three different methods were presented to
solve the same problem, with substantially different complexities.

Listing x.3 An iterative approach

int maxSublistSum (List<Integer> list) {
int n = list.size();
int i; // index for the list
int maxSum; // max sum of a sublist of

// (list.get(0), …, list.get(i-1))
int maxTail; // max sum of a sublist ending with

// list.get(i-1)

maxSum = 0;
maxTail = 0;
for (i = 0; i < n; i = i+1) {

if (maxTail > 0)
maxTail = maxTail + list.get(i).valueOf();

else
maxTail = list.get(i).valueOf();

if (maxTail > maxSum)
maxSum = maxTail;

}

return maxSum;
}

 Exercises 19
EXERCISES

x.1 Compute the time-cost of the selection sort and bubble sort algorithms of Chapter 14.

x.2 How many steps are required by the modified bubble sort algorithm (Listing 14.3) to sort a
list of length n in the best possible case?

x.3 Modify the “naive” algorithm for maximum sum of a sublist (Listing x.1) so that it is

Θ(n2).

x.4 Compute the time-cost of the insertion sort algorithm of exercise 14.5.

x.5 Compute the time-cost of the recursive binary search algorithm of exercise 19.1. Compute
the time-cost of the binary search algorithm of Section 14.4.

x.6 Compute the time-cost of the towers puzzle solving algorithm given in Section 19.2.

x.7 Compute the time-cost of the merge sort algorithm of exercise 19.3.

x.8 Compute the time-cost of the String-reversing method of exercise 19.4.

x.9 Verify that the relation introduced in Section x.3 is transitive.

x.10 Verify assertions x.1 through x.6 from page 4.

GLOSSARY

Ο-dominated by: a relation between time-cost functions; f is Ο-dominated by g provided
there is a positive integer n0 and a positive real c, such that f(n) ≤ c⋅g(n) for all n ≥ n0.

Ο(f): the set of functions that are Ο-dominated by f.

Ω(f): the set of functions that f is Ο-dominated by.

Θ(f): the set of functions that have the same magnitude as f; that is
Θ(f) = Ο(f) ∩ Ω(f).

intractable: a problem for which the best possible algorithm is exponential.

time-complexity: the time-cost of a method.

time-cost: a function that gives the maximum number of steps required by a method to
solve a problem of a specified size.

20 Addendum xComputational complexity

	addendum x Computational complexity
	x.1 Measuring program efficiency
	x.2 Time complexity for a method.
	x.3 Comparing method costs
	Figure x.1 f is O-dominated by g.
	<x.1> If c1 and c2 are positive real constants, then f º c1×f + c2.
	<x.2> If f is a polynomial function, f(n) = cknk + ck-1nk-1 + … + c0, where ck > 0, then f º nk.
	<x.3> If f g and f’ g’, then f × f’ g × g’.
	<x.4> If f g and f’ g’, then f + f’ max(g, g’). Furthermore, f + g º max(f, g).
	<x.5> If a and b are > 1, logan º logbn.
	<x.6> 1 logan n n×logan n2 n3 n4 … 2n.

	x.4 Complexity classes.
	Table 1: Values of some complexity functions.
	Table 2: microseconds per unit of time.

	x.4.1 Complexity of a problem.
	x.4.2 Determining the complexity of a method.
	An example containing a loop:
	(I)

	An example containing nested loops:

	x.5 An example: three methods
	The maximum sum of a sublist of the given list.
	if list.get(i).intValue() > 0 for some index i, then max { list.get(i).intValue() + … + list.get(j).intValue() | 0 <= i <= j < list.size()
	} else 0

	x.5.1 A naive method.
	Listing x.1 A naive approach
	int maxSublistSum (List<Integer> list) {
	int n = list.size();
	int maxSum; // max of all values of sum
	int sum; // list.getInt(i) + … + list.getInt(j)
	int i; // starting index of sublist being summed
	int j; // ending index of sublist being summed
	int k; // index of summand, i <= k <= j
	maxSum = 0;
	for (i = 0; i < n; i = i+1)
	for (j = i; j < n; j = j+1) {
	// compute list.get(i).intValue() + … +
	// list.get(j).intValue()
	sum = 0;
	for (k = i; k <= j; k = k+1)
	sum = sum + list.get(k).intValue();
	if (sum > maxSum)
	maxSum = sum;
	}
	return maxSum;
	}
	(II)

	x.5.2 A recursive method
	1. the sublist with the max sum is in the left half of the list: i.e., in (x0, …, xmid);
	2. the sublist with the max sum is in the right half of the list: i.e., in (xmid+1, …, xn1);
	3. the sublist with max sum “overlaps” the middle of the list: in particular, it includes both xmid and xmid+1.
	The maximum sum of a sublist in the given range. That is, the maximum sum of a sublist of (list.get(first), …, list.get(last)).
	Listing x.2 A divide-and-conquer approach (cont’d)
	/*
	* @require 0 <= first <= last < list.size()
	*/
	private int maxSublistSum (List<Integer> list, int first,
	int last) {
	int maxSum; // return value
	int mid = (first + last)/2;
	// index of middle element;
	// first <= mid <= last
	int maxLeftSum;
	// maxSublistSum of left half of list: i.e., of
	// (list.get(first), …, list.get(mid))
	int maxRightSum;
	// maxSublistSum of right half of l: i.e., of
	// (list.get(mid+1), …, list.get(last))
	int maxMidSum;
	// max sum of a sublist containing both
	// list.get(mid) and list.get(mid+1)
	int maxEndMid;
	// max sum of a sublist ending with list.get(mid)
	int maxStartMid;
	// max sum of a sublist starting with list.get(mid+1)
	int endMidSum;
	// list.get(i).valueOf()+…+list.get(mid).valueOf()
	int startMidSum;
	// list.get(mid+1).valueOf()+…+list.get(i).valueOf()
	int i; // index for summing
	if (first == last)
	if (list.get(first).valueOf() < 0)
	return 0;
	else
	return list.get(first).valueOf();
	else {
	// first <= mid < last
	maxLeftSum = maxSubList(list, first, mid);
	maxRightSum = maxSubList(list, mid+1, last);
	continued
	maxEndMid = list.get(mid).valueOf();
	endMidSum = list.get(mid).valueOf();
	for (i = mid-1; i >= first; i = i-1) {
	endMidSum = endMidSum + list.get(i).valueOf();
	if (endMidSum > maxEndMid)
	maxEndMid = endMidSum;
	}
	maxStartMid = list.get(mid+1).valueOf();
	startMidSum = list.get(mid+1).valueOf();
	for (i = mid+2; i <= last; i = i+1) {
	startMidSum = startMidSum + list.get(i).valueOf();
	if (startMidSum > maxStartMid)
	maxStartMid = startMidSum;
	}
	maxMidSum = maxEndMid + maxStartMid;
	maxSum = maxMidSum;
	if (maxLeftSum > maxSum)
	maxSum = maxLeftSum;
	if (maxRightSum > maxSum)
	maxSum = maxRightSum;
	return maxSum;
	}
	}

	x.5.3 An iterative method
	1. it doesn’t include xi, in which case it is the same as the maximum sum sublist of the first i elements; or
	2. it includes xi.
	1. it consists only of xi; or
	2. it includes xi-1, in which case it is xi appended to the maximum sum sublist ending with xi-1.
	Listing x.3 An iterative approach
	int maxSublistSum (List<Integer> list) {
	int n = list.size();
	int i; // index for the list
	int maxSum; // max sum of a sublist of
	// (list.get(0), …, list.get(i-1))
	int maxTail; // max sum of a sublist ending with
	// list.get(i-1)
	maxSum = 0;
	maxTail = 0;
	for (i = 0; i < n; i = i+1) {
	if (maxTail > 0)
	maxTail = maxTail + list.get(i).valueOf();
	else
	maxTail = list.get(i).valueOf();
	if (maxTail > maxSum)
	maxSum = maxTail;
	}
	return maxSum;
	}

	x.6 Summary
	Exercises
	x.1 Compute the time-cost of the selection sort and bubble sort algorithms of Chapter 14.
	x.2 How many steps are required by the modified bubble sort algorithm (Listing 14.3) to sort a list of length n in the best possible case?
	x.3 Modify the “naive” algorithm for maximum sum of a sublist (Listing x.1) so that it is Q(n2).
	x.4 Compute the time-cost of the insertion sort algorithm of exercise 14.5.
	x.5 Compute the time-cost of the recursive binary search algorithm of exercise 19.1. Compute the time-cost of the binary search algorithm of Section 14.4.
	x.6 Compute the time-cost of the towers puzzle solving algorithm given in Section 19.2.
	x.7 Compute the time-cost of the merge sort algorithm of exercise 19.3.
	x.8 Compute the time-cost of the String-reversing method of exercise 19.4.
	x.9 Verify that the relation introduced in Section x.3 is transitive.
	x.10 Verify assertions x.1 through x.6 from page 4.

	Glossary

