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Abstract

This paper addresses the hindrances behind soft-
ware developers’ failures as perceived from software
build failures. We capture and correlate the routines
and patterns of developers’ interactions in IDE, their
backgrounds, expertise, and geographic locations with
their failure instances. Our study is based on a large
dataset of 85 developers’ 11 million interactions/events
in Microsoft Visual Studio IDE over 15,000 work-hours.
The findings from this study will help developers and
organizations in shaping their working style for higher
success rate.
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1 Introduction
Unlike many other industries, software industry is

highly dependent on human efforts from the develop-
ers. Modern software engineering incorporates various
techniques and automation tools to speed up the core
software engineering activities such as development,
testing, and integration. Automated build and Con-
tinuous Integration (CI) have become common practice
in industry for building and integrating contributions
from multiple developers participating in a project.
Software build process includes tasks such as assembling
program components, data and libraries, then compil-
ing the source code linking with libraries and external
resources, running the tests, and packaging everything
together to create an executable software system.

When any of the underlying tasks in the build process
fails, the built attempt is also considered to have failed.
In CI, a build process is initiated whenever contribu-
tions (e.g., code changes) from a human developer is
pushed to the codebase for integration. A build may
fail for various reasons such as compilation failure due
to syntactic or linking errors, or test failure due to
semantic flaws. Such failures typically occur due to
human errors made by the developers.

This paper presents an exploratory study, where
we analyze the behavioral and working patterns of

developers to identify factors [6] that increase the
chances of human errors causing build failures. The
findings from this study are derived by mining and
examining a large dataset consisting of 85 developers’
11 million in-IDE interactions/events over 15,000 work-
hours.

From quantitative analyses of this large dataset,
we found that frequent changes make source code
vulnerable to failure. Developers who do not choose
their work-hour wisely are more prone to failure despite
their extra efforts. Beside expertise, developers’ formal
institutional education also influences the likelihood of
their success at work. The results are validated in the
light of statistical significance.

Outline: The remaining of this paper is organized
as follows. Section 2 describes the setup of our study
including our methodology for data collection and
analysis. Section 3 presents the findings from this study.
In Section 4, we discuss the possible threats to the
validity of this work. Section 5 includes a discussion of
related work, and finally Section 6 concludes the paper.

2 Methodology

2.1 Extraction and Parsing of Data

We use a large dataset made publicly available by
the KaVE Project [5]. This dataset includes 85
developers’ around 11 million events/interactions in
Microsoft Visual Studio IDE over a period of more than
15,000 work-hours. The interactions are captured using
FeedBaG++ interaction tracker and recorded in json
format. For different in-IDE activities, around 20 types
of events have been captured [3]. We parse the data
and collect the users’ information, their involvement in
the IDE, their interaction with the code, their build
activity and their test activity. After parsing through
the huge data set, we get the following events given in
Table 1 required for our study. We store extracted data
in csv format and directly export to MySQL database.
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Table 1: Analyzed Event Streams

Event Name Description Total

UserProfileEvent User information 380

EditEvent Track of edits 497514

ActivityEvent Developer active in IDE 316927

BuildEvent Build action of developers 15052

TotalBuildEvent Target projects in each build 83431

TestRunEvent Tests run by developers 3876

TotalTestRunEvent Test results for each test 338381

2.2 Mining Data
83 unique users’ multiple sessions create 380 User-

ProfileEvents. Two users (id: 41, 84) having no
profile information but their activities captured in other
Events, comprises 85 developers. Figure 1 shows the
tables of our database and the common attributes of
each event is also shown separately. We have sorted
out the individual events of each developer. In order
to find out the behavior of each developer distinctly,
we follow Algorithm 1 to generate database table
UserALLEvents, attributes shown in Figure 1.

Figure 1: Database Schema with Attributes

As we aim at dealing with the Failure/Success of
a developer, both TestRunEvent and BuildEvent
need to be evaluated. After analyzing data of
UserAllEvents, we figure out that we have
information of only 24 developers corresponding
to TestSuccess/TestFailure. The target audience being
so small, we focus on only BuildEvent to analyze
Failure of the developers. Some developers have neither
Successful Build Event nor Failed Build Event. So, we
exclude those data from our study and work with the
data of 76 developers.

The UserProfileEvent of a developer has several at-
tributes but we focus on his Programming Knowledge,
Education Level and Geographical Location to analyze

Algorithm 1: Update Individual UserEvents

1 for Each user in Users do
2 QUERY NumberOfChanges, SizeOfChanges

from EditEvent;
3 SUM(NumberOfChanges),

SUM(SizeOfChanges);
4 QUERY TriggeredAt from
5 ActivityEvent g1 INNER JOIN

ActivityEvent g2
6 ON g2.id = g1.id + 1 AND g1.‘TriggeredAt‘ =

g2.‘TriggeredAt‘ ;
7 Duration← SECOND(g2.‘TriggeredAt‘−

g1.‘TriggeredAt‘);
8 SUM(Duration);
9 QUERY Successful from BuildEvent;

10 if TRUE then
11 SUM(BuildSuccess);
12 end
13 if FALSE then
14 SUM(BuildFailure);
15 end
16 Query Result from TestRunEvent;
17 if Successful then
18 SUM(TestSuccess);
19 end
20 if Failed then
21 SUM(TestFailure);
22 end
23 UPDATE UserAllEvents;

24 end

further. The following subsections describe how we deal
with these criteria.

2.2.1 Expertise of Developers

Table 2: Categorization of Developers by Expertise

User
Type

(Programming General,
Programming C#)

Expert (P,P)

Novice (N,N),(N,n),(n,N),(n,n)

Medium
(P,N), (N,P), (P,n), (n,P), (P,U),
(U,P), (N,U), (U,N), (n,U), (U,n)

Unknown (U,U)

Here, P=Positive, N=Negative,
n=Neutral, U=Unknown

Of these 76 developers, 17 of them have not provided
their expertise of Programming Knowledge. The values
defining their Programming Skill are within the range
- 3 to +3 where 0 denotes Neutral. So, according to
their expertise, the categorization is shown in Table 2.



2.2.2 Geographical Locations

We aim at analyzing developers behavior according to
their Geographical Location. All the events have been
captured at local time of the developers. So, we can
identify their location from the TriggeredAt attribute.
This field is a Java ZonedDateTime Object. So, we
capture the ZoneOffset from the timestamp and add
it as an additional attribute in the database. All these
developers belong to 15 different time-zones. According
to the UTC Offset [2], we get that UTC -08:00 to -
03:00 covers both North America and South America.
Accordingly, we divide these zones into three inter-
continental regions. Table 3 shows the classification.

Table 3: Categorization of Geographic Regions

Continent ZoneOffset Region

North America &
South America

-08:00, -07:00, -
06:00, -05:00, -
04:00, -03:00

1

Africa & Europe
+00:00, +01:00,
+02:00, +03:00

2

Asia +07:00 3
Asia & Ocenia +08:00, +10:00
Ocenia +12:00, +13:00

2.2.3 Work-Hours

We also assess the developers behavior during Working
Hour and Leisure Hour. We divide the 24 Hours
of day into two time-intervals each with 12 hours.
We have considered 8AM-8PM as Working Hour and
8PM-8AM as Leisure Hour. As, different countries
around the globe may follow different schedule for work-
time, adherence to this difference, we pick the 12 hour
schedule. We distribute data of UserALLEvents
into two similar database tables according to the Time
Division.

3 Analyses and Findings
The findings from this study is organized in ac-

cordance with the criteria/attributes described in the
previous section. To examine the statistical significance
of the results, we use Pearson Product Moment Cor-
relation Coefficient [7] and Chi-Square test [13] with
significance probability level p = 0.05.

3.1 Edit Frequency
When a user frequently changes code, it has a

negative impact on success. From Figure 2, we can
see that with higher number of changes in code, success
rate decreases. Again, users having higher success rate
do fewer number of edits.

Figure 2: Relationship between Edit and Success

Table 4: Edit and Success Related to Expertise

Expertise Edit Success(%) Education (%)

Expert 0.1644 96.3110 78.9474
Novice 1.1456 94.8454 66.6667
Medium 3.4679 92.2469 42.8571

We find that Expert users tend to do less edit
compared to Novice users. But users who belong to
Medium category do more edits compared to the Novice
and their success rate is lower than that of novice,
reflected in Figure 3.

Figure 3: Success Rate at Different Edit Frequency

Table 4 explains the reason. Although Novice de-
velopers have less programming knowledge, they have
proper education compared to the developers belonging
to Medium Category. Edit sizes based on number
of changed locations and size of changes in terms of
characters induce the frequency of build success or
failure. Tracking and fixing the causes of the build
failure becomes difficult due to large amount of edits
that may reside in different locations in the code.

We have found that success decreases when there
is an increase in Edit. We compute the Pearson
correlation coefficient, r, between all categorized users’
edit frequency and success rate. r = −0.0234, indicated
a weak negative correlation. Again, Novice developers
have a lack of programming knowledge and so they are
tend to make more changes in code. For them r =



(a) Regular Working-Hour (b) Leisure-Hour (c) % of Time Spent during Working-Hour

Figure 4: Relationship between Work-Hour and Success Rate

−0.3225, which indicates a slightly stronger negative
correlation between success rate and edit frequency.

3.2 Work-Hours
Working during late-hours or very early-morning is

one of the reasons for high failure rate. Reasons
behind this could be lack of concentration, fatigue.
About 38.16% of developers who work after/before their
regular work hours have a failure rate over 90% shown
in Figure 4a. Only 38.15% of them have a success rate
over 90% which is below average.

On the other hand, Figure 4b reflects that only
5.26% of developers working in their regular work-hour
have a failure rate over 90% and 78.94% of them have
success rate over 90% . But it’s a matter of relief that,
65.78% developers spend more than 80% of their total
hours in regular work-hour perceived from Figure 4c.
Although only 5.26% developers spend over 80% of their
total time during leisure hour, this small number is
insignificant and we can consider it as their personal
trait. Still, 28.94% developers does not follow regular
work-hour strictly. If this portion of the population can
be directed to maintain a consistence work-time, it will
contribute to increased success rate.

Table 5: Work-Hour and Failure (Observed and
Expected) [F.=Failure]

Low F. Med. F. High F. Total
Ob. Ex. Ob. Ex. Ob. Ex.

Work 60 46.5 12 13 4 16.5 76

Leisure 33 46.5 14 13 29 16.5 76

Total 93 26 33 152

To examine the statistical significance of the obser-
vations, we apply Chi-square test. The contingency
table for the test is presented in Table 5. The Chi-
square test, with χ2(df = 2, N = 152) = 26.932, p =
0.05, suggests statistical significance of the observed
relationship between developers’ work-hours and failure
rates.

3.3 Geographical Regions

Figure 5: Region-wise Success Rate

In examining the success rate of the developers
across geographical regions, we have considered above
75% of success rate as High Success. According
to Figure 5, among the developers, 95.23% of them
belonging to Europe-Africa region, have High Success.
On the contrary, North-South-America region, has the
lowest percentage of 77.78%. Again, Asia-Oceania
region has 85.71% people, having High Success. This
success depends on the expertise of the developers,
their education and time spent in work summarized in
Table 6.

Table 6: Region-wise Success Rate

Regions
Criteria 1 2 3

Success (%) 77.78 95.24 85.71
Expert (%) 55.56 54.76 85.71
Novice (%) 18.52 7.14 0
Formal Education (%) 44.44 54.76 42.86
Avg. Time/User (hour) 60.33 87.79 150.45

Although America and Europe-Africa regions have
similar percentage of expert developers, Europe-Africa
region has 54.76% formal education compared to
44.44% education among the Americans. Again in
Asia-Ocenia region, although the percentage of expert
developers is 85.7%, their education percentage is only



42.85%. So, in Asia-Ocenia region, they have increased
their success rate by increasing their time spent in work
compared to the developers in Europe-Africa region.
Developers in America region spend less time compared
to the developers in Europe-Africa region.The success
rate in America region is also low than that of the
Europe-Africa region.

Table 7: Geographic Region and Failure (Observed and
Expected) [F.=Failure]

Low F. High F. Total
Region Ob. Ex. Ob. Ex.

1 78 86.333 22 13.667 100

2 95 86.333 5 13.667 100

3 86 86.333 14 13.667 100

Total 259 41 300

To verify the statistical significance of the observa-
tions, we again apply Chi-square test. The contingency
table for the test is presented in Table 7. The Chi-
square test, with χ2(df = 2, N = 300) = 12.261, p =
0.05, suggests statistical significance of the observed
relationship between developers’ geographic locations
and failure rates.

3.4 Educational Backgrounds

Figure 6: Relationship between Education and Success

Table 8: Success Rate and Educational Backgrounds

Exper-
tise

Succ-
ess
(%)

B M P A
F.E.
(%)

A
(%)

Expert 96.31 12 17 1 7 78.95 18.42

Novice 94.85 2 2 0 1 66.67 16.67

Medium 92.25 2 1 0 4 42.86 57.14

Here, B=Bachelor, M=Masters, P=PhD,
A=AutodidAct, F.E.=Formal Education

According to the user profiles of the developers,
their Education attribute has the following values:
Bachelor, Master, PhD, AutodidAct, Training, None,

Unknown. AutodidAct has been assigned to the devel-
opers who are self-learners. Developers having Formal
Institutional Education, have more success rate irre-
spective of their programming knowledge. According
to programming knowledge, developers having medium
expertise tend to have more success rate than the novice
developers reflected in Figure 6. But here the scenario
is different. 66.67% of novice developers have Quality
education compared to 42.81% of Medium-Expertise
Developers. Again, 57.14% medium-expertise develop-
ers are self-learners. So, this decreases their success
rate. Table 8 summarizes the results. So, Institutional
Education plays a vital role to improvise the efficiency
of a developer.

Table 9: Education and Failure (Observed and
Expected)

Low F. Med. F. High F. Tot.
Ob. Ex. Ob. Ex. Ob. Ex.

F.E. 79 63 67 63 43 63 189

S.L. 18 30.67 17 30.67 57 30.67 92

Oth. 3 6.33 16 6.33 0 6.33 19

Tot. 100 100 100 300

Here, F.E. = Formal Education, S.L. = Self-learn
Oth. = Others, Tot. = Total, F.=Failure

To probe the statistical significance of the observa-
tions, we again apply Chi-square test. The contingency
table for the test is presented in Table 9. The Chi-
square test, with χ2(df = 4, N = 300) = 67.444, p =
0.05, suggests statistical significance of the observed re-
lationship between developers’ educational background
and failure rates.

4 Threats to Validity
Although this study is based on a large dataset

consisting of 11 million in-IDE event traces, these
events/interactions are obtained from 85 developers
only. Hence, one may argue against the applicability of
the results to all developers in general. However, these
85 developers represent individuals with diverse ex-
pertise levels, education backgrounds and geographical
regions. Thus, the aforementioned threat is minimized
to a great extent.

The captured interactions in the dataset include
developers’ activities while their work with C# projects
only inside the Microsoft Visual Studio IDE. Thus,
the findings may not generalize to projects written
in languages other than C#, or activities in IDE’s
other than the Microsoft Visual Studio. However,
programming activities are not very different with
respect to programming languages or IDE’s in use.



The dataset used in this study is publicly available.
The methodology of data mining, analyses, and results
are well documented in this paper. Therefore, it should
be possible to reproduce this work and thus we develop
high confidence about the reliability of this study.

5 Related Work

Several earlier work studied software build failures.
Typos are one of the the most common reasons for
software build fails [12]. Mining IBM Jazz Dataset [8],
Connor et. al [1] used multiple code metrics to
detect build failure . They determined the software
metrics being the best indicators to suggest successful
or unsuccessful build, whereas we detected the factors
leading to frequent build failure.

Another study [9] used the same dataset we have used
and only replicated google’s study [11] regarding the
rate at which builds in developer workspace fail in the
Visual Studio context. They calculated the time to fix
a failing build. Again, on the same data set, Rodriguez
et. al [10] described the efficiency of developers on
weekdays, weekends and selective time of the day and
showed that prolonged work time can affect efficiency
[4]. Our study also reveals that if the developers do not
choose their working-hour wisely, it affects their success
rate.

6 Conclusion

In this paper, we have presented an exploratory study
to throw spotlight on the determinants affecting the
performance of software developers. We have analyzed
85 developers 11 million in-IDE interaction traces over
15,000 work-hours.

We have found that infrequent edits in source code
and wise utilization of the regular work-hours stimu-
late high success rate. Programmers from disparate
regions have diverse success rate while the developers
from Europe and Africa regions are found to have
better success rates. In addition to expertise levels,
formal institutional education is found to have played
a significant role behind higher success rate of certain
developers. A self-taught programmer having good
expertise with no formal education is unlikely to outper-
form a developer lacking experience but having formal
educational background. The results are validated in
the light of statistical significance.

The finding from this study will help individual de-
velopers and organizations in improving their working
approaches to leverage success rates. In future, we plan
to conduct a larger study including a larger number
of developers from diverse background, expertise levels,
and geographic regions.
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