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Abstract: Proteins are linear chain biomolecules that are the basis of functional networks in all 
organisms. Protein-protein interaction (PPI) networks are networks of protein complexes formed 
by biochemical events and electrostatic forces. PPI networks can be used to study diseases and 
discover drugs. The causes of diseases are evident on a protein interaction level. For instance, 
elevation of interaction edge weights of oncogenes is manifested in cancers. The availability of 
large datasets and need for efficient analysis necessitate the design of scalable methods 
leveraging modern high-performance computing (HPC) platforms. In this paper, we design a 
lightweight framework on a distributed-memory parallel system to study PPI networks. Our 
framework supports automated analytics based on methods for extracting signed motifs, 
computing centrality, and finding functional units. We design message passing interface  
(MPI)-based parallel methods and workflow, scalable to large networks. To the best of our 
knowledge, these capabilities collectively make our tool novel. 
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1 Introduction 
Studying network (graph) data is fundamental in diverse 
scientific disciplines since network is a powerful abstraction 
for representing interactions among entities in a system 
(Newman, 2003; Girvan and Newman, 2002). The entities 
and their interactions are represented as nodes (vertices) and 
links (edges) of a network, respectively. Examples include 
biological networks (Girvan and Newman, 2002; Chen and 
Lonardi, 2009), the web graph (Broder et al., 2000), various 
social networks (Kwak et al., 2010), and many other 

information networks. Mining biological data is of growing 
interest since they represent fundamental bio-chemical 
mechanisms in a cell or in a living organism (Chen and 
Lonardi, 2009). Due to the advancement of data and 
computing technology, biology and related disciplines 
generate a large volume and variety of data (Girvan and 
Newman, 2002), many of them are about proteins and 
protein-protein interactions (PPI) (Ewing et al., 2007). PPI 
networks offer an excellent chance to study disease 
dynamics in molecular level and shed light on drug 
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discovery (Bader et al., 2004; Han et al., 2004; 
Schwikowski et al., 2000). However, large volume and 
variety of PPI datasets pose computational challenges, 
which motivates for scalability, both in algorithmic methods 
and analysis workflow. In this paper, we develop an  
HPC-based framework to apply network-centric approaches 
to study PPI networks. 

1.1 Studying PPI networks: significance and 
relevance 

Proteins are linear chain biomolecules that are the basis of 
functional networks in all organisms. Aspects of their 
interactions are of growing interest (Rual et al., 2005; Stelzl 
et al., 2005). PPI networks can be used to study disease and 
for drug discovery (Altieri, 2008; Brastianos et al., 2015). 
They also reveals the causes of diseases – for instance, most 
cancers are caused by increasing interaction edge weights of 
oncogenes and decreasing interaction edge weights of 
tumour suppressor genes (Altieri, 2008; Chin et al., 2004). 
Most human diseases are thought to have fewer than five 
causal PPIs; many have two or fewer causal interactions 
(Hopkins, 2008). Further, PPI networks help in drug 
discovery. Many approved drugs target a particular PPI 
(Altieri, 2008; Hopkins, 2008). 

PPI networks have been shown to be relevant to 
treatment of diseases and drug discovery (Altieri, 2008; 
Hopkins, 2008). Further, there has been a line of work 
focusing on purely the bio-chemical aspect of PPIs. Unlike 
those works, this paper stresses on computing (mining and 
analysis) aspect of knowledge discovery and demonstrate 
how we can relate our results to biochemical contexts. 
There have been earlier works suggestive of the 
effectiveness of network-based approaches for analysing 
PPIs (Altieri, 2008; Hopkins, 2008). Local and global PPI 
network structural motifs suggest therapeutic strategies. The 
centrality hub nodes of PPI networks can be good 
candidates for drug target. Works such as (Altieri, 2008) use 
both global PPI information and pathway knowledge to 
reveal more bio-chemical insights. Most work related to 
network analysis do not consider signed and weighted 
networks (Suri and Vassilvitskii, 2011; Chiba and 
Nishizeki, 1985). However, PPI networks are both signed 
and weighted. Moreover, many existing methods are not 
scalable to large networks (Fortunato and Lancichinetti, 
2009; http://vlado.fmf.uni-lj.si/pub/networks/pajek/; 
https://networkx.github.io/). Scalable parallel and  
sampling-based algorithms (Arifuzzaman and Khan, 2015; 
Arifuzzaman et al., 2013, 2015a, 2015b) are required to deal 
with large network data. 

1.2 Unique challenges for scalable analysis 
In the era of big data, we are deluged with network data 
from a wide range of areas. The volume of biological and 
bio-medical data is also growing rapidly. The string 
repository (https://string-db.org/) has PPI networks with 
9.6M proteins and 1,380M interactions. There are many  
 

other public repositories (https://thebiogrid.org/) that share 
large biological datasets. This emergence of large-scale 
network data motivates us to find scalable algorithms and 
tools for extracting useful intelligence. In some cases, these 
networks do not fit into the main memory of a single 
computing node. Further, an algorithm having a high 
computational complexity might fail to work on networks 
with a few millions edges. 

1.3 Contributions of this work 
In this paper, we describe our framework for highly scalable 
and rigorous methods for mining and analysing PPI 
networks. To address the issues emerged from large-scale 
datasets, we develop a workflow consisting of scalable 
labelled graph analysis algorithms leveraging large 
distributed multi-core clusters. The key contributions are as 
follows. 

1 A high performance computing-based tool that scales: 
the tool includes scalable parallel methods (algorithms) 
for discovering functional units and extracting motifs in 
PPI networks. Our methods and workflow scale to large 
networks for a wide variety of network metrics. 

2 An extensible framework that can integrate new 
methods: the tool currently includes many mining and 
analysis methods including counting triangular motifs, 
community detection, computing diameter, and several 
centrality and path-based metrics. Any new methods 
can easily be integrated with the tool. 

3 Identification of relevance to biological or bio-medical 
contexts of PPI: our methods for signed motif 
extraction, centrality computation, and discovery of 
functional units can be used to identify target proteins 
and important hubs. Such network motifs and 
properties of a PPI network have useful implications for 
drug target discovery. 

4 Promotion of interdisciplinary collaboration: we 
anticipate this tool can facilitate multidisciplinary 
investigations consisting of experts from both 
computational and biological domains. Further, the tool 
can essentially be generalised to other related 
applications in neuroscience, medical informatics, and 
likes. 

The rest of the paper is organised as follows. The datasets 
and computing resources are briefly described in Section 2. 
We present the overview and architecture, capabilities, and 
evaluation of our framework in Sections 3, 4 and 5, 
respectively. We compare our tool with existing network 
analysis tools in Section 6. We conclude in Section 7. 

2 Preliminaries 
We present our datasets, computational model, and 
resources below. 
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2.1 Notation and definitions 
The given network is denoted by G(V, E), where V and E 
are the sets of vertices and edges, respectively, with  
m = | E | edges and n = | V | vertices labelled as 0, 1, 2, …,  
n – 1. We use the words node and vertex interchangeably. 
We assume that the input network is undirected. If (u, v) ∈ 
E, we say u and v are neighbours to each other. The set of 
all neighbours of v ∈ V is denoted by ,vN  i.e., vN  = {u ∈ 
V | (u, v) ∈ E}. The degree of v is dv = | | .vN  

We will also introduce notations in later sections when 
required. We use several network analysis algorithms 
including counting triangles. A triangle is a set of three 
nodes u, v, w ∈ V such that there is an edge between each 
pair of these three nodes, i.e., (u, v); (v, w), (w, u) ∈ E. The 
number of triangles incident on v, denoted by Tv, is same as 
the number of edges among the neighbours of v, i.e., 

{ }( , ) : , .v vT u w E u w= ∈ ∈N  

To discuss the distributed-memory system we use, let P be 
the number of processors used in the computation, which 
we denote by p0, p1, …, pP–1 where each subscript refers to 
the rank of a processor. 

We use K, M and B to denote thousands, millions and 
billions, respectively; e.g., 1B stands for one billion. 

2.2 Datasets 
We study PPI networks from StringDB database 
(https://string-db.org/) for several organisms. The networks 
are represented as edgelists with several interaction values 
based on various evidences such as interaction and 
coexpression scores. The datasets we use are summarised in 
Table 1. These datasets contain an edge weight valued on a 
scale of 0–1,000 between two proteins. This weight is the 
overall interaction score – sum of all the categorical scores 
such as coexpression score, neighbourhood score, 
experimental score, and several other values given by the 
database. The datasets identify proteins using unique protein 
identifiers called Ensembl Protein IDs determined by 
Ensembl.org. Further details on these proteins and also 
other genes can also be found at Ensembl Genome Browser 
(http://www.ensembl.org). 

We also experimented on other datasets found  
from National Center for Biotechnology Information 

(https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/
hiv-1/interactions/browse/) and BioGrid (https://thebiogrid. 
org/). Many of these datasets have no quantifiable 
interaction scores that can be further analysed. Even though 
we experimented on datasets from several sources, many of 
them are not presented in this paper for brevity. 

2.3 Computation model and resources 
The parallel algorithms our tool uses were developed for 
message passing interface (MPI)-based distributed-memory 
parallel systems. Each processor has its own local memory. 
The processors do not have any shared memory, and they 
communicate via exchanging messages. Compute resources 
are the physical resources on which individual jobs are 
executed. Our current resources include two HPC Linux 
clusters at Louisiana Optical Network Infrastructure (LONI) 
(https://loni.org/) and our host institution. Loni QueenBee 
system is a 50.7 TFlops peak performance 680 compute 
node cluster running the Red Hat Enterprise Linux 4 
operating system. Each node contains two Quad Core Xeon 
64-bit processors operating at a core frequency of 2.33 GHz. 
The compute cluster at our host institution is a small cluster 
with two large-memory computing nodes, each with 16 
cores and 512 GB of RAM, connected by QDR infiniband 
interconnect and running Linux operating system. 

Potential compute resources include any traditional HPC 
clusters, compute grids, clouds (e.g., Amazon Web 
Services), or dedicated servers with MPI libraries. A typical 
compute resource runs our network analysis kernels. Our 
middleware (control unit) and data and visualisation units 
also run on compute resources. 

3 New generation graph analytical tool for PPI 
Networks 

The use of network (graph) analysis for understanding 
protein interactions and their implication on broader aspects 
of biological process in organisms is still nascent (Altieri, 
2008; Hopkins, 2008), and more studies are needed to 
demonstrate a clearer picture of results. In this paper, we 
hope to contribute to this literature by developing an  
HPC-based tool that helps assess both node and  
clustering-based characterisation of PPI networks. 
 

Table 1 A subset of datasets used in our experiments 

Network Nodes Edges Source 

Homo Sapiens 19,247 4,274,001 StringDB (https://string-db.org/) 
Acetobacterium Woodii 3,439 369,956 StringDB (https://string-db.org/) 
Albugo Laibachii 5,849 1,443,060 StringDB (https://string-db.org/) 
Dinoroseobacter Shibae 3,567 412,618 StringDB (https://string-db.org/) 
Bacillus Cytotoxicus 3,765 298,873 StringDB (https://string-db.org/) 
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Figure 1 Architectural overview of our framework for scalable mining, analysis, and visualisation of PPI networks 

 

 
The presented tool is a first on several levels. The 
framework builds upon and extends significantly the 
existing work on scalable algorithms for graph data 
preprocessing (Arifuzzaman and Khan, 2015), counting 
triangular motifs (Arifuzzaman et al., 2013), and efficient 
parallel load balancing schemes (Arifuzzaman et al., 
2015a). It complements the protein interaction literature 
with scalable algorithmic methods for efficient analysis. It is 
well established that causation of disease and drug 
discovery have significant correlation with network 
properties of nodes in PPI networks (Stelzl et al., 2005; 
Altieri, 2008; Hopkins, 2008). 

Based on the prior work of the authors on  
network-centric algorithms, for both sequential and parallel 
settings, and by leveraging open-source network analysis 
libraries such as SNAP (http://snap.stanford.edu/) and 
NetworkX (https://networkx.github.io/), we build an 
extensible computational framework for mining and 
analysing PPI networks. 

3.1 Architectural overview of the tool 
Our framework for analysing PPI networks is built on a 
distributed system consisting of a set of well-defined units 
(and services). The framework incorporates a Linux-based 
architecture with middleware developed with shell-script 
and C++-based code and scripts. Our network analysis 
kernels are mostly developed in C++ with MPI libraries. We 
also have python-based application code and scripts. For job 
submission, we use moab qsub scripts. All functional units 
are coupled loosely so as to support extensibility and 
modifications. Figure 1 depicts the high-level architecture 
of the framework. We discuss the key components below. 

1 Control unit: the control unit employs the central 
communication and coordination mechanism for our 
tool. It provides asynchronous, loose coupling of the 
system components. The unit initiates a workflow – put 
requests for executing jobs. Every analysis task is 
transformed into a job consisting of an analysis kernel. 
Additionally, the control unit facilitates task parallelism 
by distributing different serial tasks among separate 
MPI processes. Requests are handled and scheduled by 
PBS qsub scripts using moab scheduling mechanism. 
The control unit specifies the details about how a set of 
analyses is to be fulfilled, in the form of an embedded 
workflow. An analysis request contains the parameters 

to run the analysis. The request also contains the 
specification for the workflow to run, including both 
pre- and post-processing and inspecting the output. 
Based on this inspection, a new workflow can be 
initiated with a new set of parameters and analysis 
kernels. 

2 Computational resource unit: once execution requests 
are identified, they are run on a specific physical 
machine. It is done by constructing system-specific job 
submission scripts and monitoring the progress of the 
execution. To achieve larger scalability, we need to 
speed up the analysis significantly and make use of the 
computing clusters efficiently. We design MPI-based 
parallel computing techniques to scale our methods to 
large networks and to a large number of processors. 
Our motif counting methods are based on efficient 
MPI-based algorithms (Arifuzzaman et al., 2013). To 
execute a bunch of sequential analysis kernel, we 
design task parallelism: we distribute multiple kernels 
among a set of MPI processes. Since our tool is 
extensible, new methods (either serial or parallel) can 
easily be integrated. Our scripts automatically assign 
them to appropriate number of processors guided by the 
metadata of the executable method. 

3 Analysis unit: analysis unit is the computational engine 
behind mining PPI networks. This unit consists of 
scalable network analysis kernels, both the ones 
developed from scratch for this tool and from  
open-source graph analysis algorithms. Since the 
description of this unit is rather involved, we present it 
in the next section separately. In conjunction to analysis 
unit, we have a data management sub-unit: this unit is 
responsible for managing the data resources that reside 
on a system. The unit also deals with transferring  
non-local datasets, cleaning datasets, applying 
scores/thresholds, converting formats, storing or 
formatting results, etc. There are several high 
performance services developed for data management. 
For instances, we implement parallel read, where 
processors can read disjoint portions of a file in 
parallel. 

4 Data report or visualisation unit: our report and 
visualisation unit is based on gnuplot tool 
(http://www.gnuplot.info). We generate numerous 
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statistics plots and distribution using gnuplot. Such 
capability is integrated with analysis unit, so generation 
of these tools are automated. Adding a new plot and 
visualisation capability is straightforward and requires 
little C++ coding. A new visualisation is modularised 
(and thus flexible and easy to maintain) by the virtue of 
being a C++ object. 

We also use a java-based visualisation library Gephi 
(https://gephi.org/) for generating additional 
visualisations. Gephi is open source, modular, and 
easily extensible through plugins. It is also rich in 
visualisation features. To create a visualisation of a 
network, the network is converted into gexf format, an 
XML representation. The format allows for 
dynamically adding multiple attributes to nodes and 
edges. Any layout algorithms can be used to determine 
object locations. Statistics such as betweenness, page 
rank, and degree can be applied to decide the size and 
colour of the nodes and edges. Visualisation by Gephi 
can give useful insights into a network by highlighting 
important nodes, edges and communities in a graph or a 
subgraph. The primary features and benefits of such 
visualisation are as follows. 
• Convenient layouts: Gephi provides several layout 

algorithms from the literature such as Force Atlas, 
Yifan Hu and Fruchterman Reingold 
(https://gephi.org/). 

• Feature-based organisation: the node sizes can be 
proportional to their degrees, betweenness 
centrality, or other network metric. 

• Subgraph visualisation: it offers visualisation of 
subgraphs that is very useful, especially for 
massive networks. We have developed several 
heuristics for choosing subgraphs. First, find a seed 
(by random seed, central nodes, etc.). Second, 
expand the seed by a BFS traversal. 

Using Gephi orthogonal to gnuplot gives the user additional 
capabilities for visual analysis. The inputs and parameters 
needed for Gephi is automatically computed by our tool. 
The user can interact with the tool to configure different 

visualisations. Note that our framework allows for adding 
any open source visualisation tool with little coding effort. 

4 Network analysis kernels 
A suite of graph metrics (or analysis kernels) is used as the 
computational engine behind our framework. These kernels 
are of varying levels of complexity and computational 
intensity. We classify them into three categories based on 
the topological granularity they focus on – global, 
community, and local, as shown in Figure 2. Note that our 
framework is readily extensible to include any graph 
kernels. Further, how many of these kernels will be used for 
a particular investigation depends on the requirements of the 
analysts. 

We use the global metrics to measure the high-level 
properties of the PPI networks. These metrics are mostly 
less expensive and are intended to work on the entire graph. 
For more expensive and complex measures, we use parallel 
implementation of them. As instance, our tool adapts the 
parallel algorithms presented in Arifuzzaman et al. (2013, 
2015a, 2015b) to find signed triangular motifs at scale. 
These algorithms are based on efficient partitioning and 
load balancing schemes and scale to large networks. 

We use another suite of metrics to investigate PPI 
networks at community level. Complex systems are 
organised in clusters or communities, each having a distinct 
role or function. In the corresponding network 
representation, each community appears as a dense set of 
nodes having higher connection inside the set than outside. 
Communities reveal the organisation of complex systems 
and their function. For PPI networks, a community is often 
interpreted as a functional unit, and thus, community 
detection is also another important analysis kernel for PPI 
networks. We use several scalable algorithms for 
community detection such as Louvain (Blondel et al., 2008) 
and label propagation (Raghavan et al., 2007). We also use 
several related analysis kernels such as k-core 
decompositions. Such decompositions can leverage the 
higher-order structures to locate the dense subgraphs with 
hierarchical relations. 

Figure 2 Schematic diagram of our analysis workflow starting from data preprocessing to the generation of reports and visualisation 

 
Note: The workflow supports a multi-level approach with a variety of analysis kernels working on different topological 

granularity 
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Computation on individual nodes is done by using local 
metrics. Local metrics are usually the slowest among the 
kernels. We implemented several distribute-memory 
algorithms such as computing local clustering coefficients 
and local Jaccard indices. We are also in the process of 
adding more parallel kernels. Serial analysis kernels can 
also be used using task parallel execution as discussed in 
Section III. Further, it is also an attractive option to first 
identify important subgraphs by community analysis and 
then apply the local metrics on the subgraphs (which is 
smaller than the original graph). Centrality metrics such as 
local between centrality and closeness centrality are also 
important local metrics for identifying central nodes of  
bio-chemical significance. 

4.1 A multi-level approach 
Our workflow suggests a multilevel approach for efficient 
analysis: It is generally advised to start analysis with the 
coarsest (global) and becoming finer at each iteration. Any 
structure identified as interesting at a coarse level is passed 
down to be analysed at the next finer level. We generally 
identify three levels, based on the topological granularity 
levels, as mentioned above as global, community, and local 
levels. At the coarsest level, only the global metrics can be 
applied on the whole network. Communities and local 
metrics on individual nodes are not considered at this stage. 
We use efficient and scalable global metrics. Next, 
community-level metrics are computed. Individual 
communities can then be locally analysed by applying local 
metrics. Note that such multi-level approach allows to work 
with even very scare resources (a commodity laptop) in a 
computationally efficient way. However, our parallel 
algorithms and scalable HPC-based framework allows to 
apply local metrics on the entire networks. Hence the 
analysts are not limited to follow the multi-level approach in 
a strict order, rather the approach serves as an organisational 
or workflow suggestion. 

As for the analysis automation, a simple self-descriptory 
script serves as the starting point of the workflow. It is 
straightforward to specify the analysis kernels and input 
network to work on. After initialising the workflow, all the 
remaining steps such as data pre-processing, analysis, and 
generation of reports and plots are fully automated. The 

end-user can inspect the reports and plots and then re-run 
analyses with different parameters and kernels, if needed. 

5 Experimental results and implications 
We provide a flexible tool to support scalable data analytics 
for PPIs. The tool reveals useful patterns and properties 
from PPI networks by using appropriate mining and 
analysis techniques. We present a summary of computed 
network metrics, their biological relevance, scalability of 
the tool, and a comparison with previous tools below. 

5.1 Computing global network metrics 
Our global analysis consists of metrics such as finding 
general statistics (e.g., number of edges, nodes), finding 
patterns and motifs, e.g., counting triangles, and finding 
diameter of the networks. Table 1 shows the number of 
proteins and interactions for five PPI networks. Homo 
Sapiens dataset has a large number of proteins and their 
identified interactions. Albugo Laibachii dataset also has 
over a million protein interactions. We present several 
analyses on all five datasets of Table 1. 

5.1.1 Finding patterns or motifs 
Network motifs of size 3 and 4 are overrepresented in  
real-world networks generated through processes such as 
hyperlink creation, language formation, and personal social 
network propagation. Such structures in biological 
functional networks are suggestive of processes such as 
positive and negative feedback loops (Ewing et al., 2007; 
Schwikowski et al., 2000), which have important 
implications for therapeutic strategies. We enumerate signed 
triangles for networks datasets of Table 1. As shown in 
Table 2, Homo Sapiens and Albugo Laibachii networks 
have 321.6M and 215.12M triangles, respectively, which 
indicates a high triangle density (triangles per node). In fact, 
Algugo Laibachii has the highest triangle density among the 
five datasets. Table 2 also shows average clustering 
coefficients (CC) of the five datasets. These values are 
large, indicating the proteins interact with the 
neighbourhood quite closely. 

Table 2 Network properties of our datasets: degree, components, coreness, triangles, clustering coefficients (CC), and diameter 
statistics 

Networks 
Degree  Components 

Max. k-core Triangles Avg. CC Diameter 
Min. Max. Avg.  # of comp. Max. size 

Acetobacterium Woodii 1 2,075 172.51  1 4,192 146 6.26M 0.191 6 
Albugo Laibachii 1 2,676 493.44  21 5,798 566 215.12M 0.476 6 
Bacillus Cytotoxicus 1 1,746 159.51  2 3,803 146 6.41M 0.226 5 
Dinoroseobacter Shibae 1 2,371 229.04  1 3,574 172 13.06M .297 5 
Homo Sapiens 1 10,853 444.12  1 19,247 791 321.6M 0.231 6 
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5.1.2 Computing diameters 
We compute diameters to find insights about reachability 
and ease of communication and diffusion in PPI networks. 
The diameters are less than 6 for all networks (Figure 2), 
suggesting good reachability in the network. Any 
biochemical process originating in a particular protein can 
reach to the farthest protein in only six hops. Domain 
experts may find this information useful in designing drugs 
for target proteins. Our implementation of diameter kernel is 
adapted from SNAP library (http://snap.stanford.edu/). 

5.2 Community and subgraph-based analysis 
We execute community detection methods to reveal 
functional units in PPI networks. The community statistics 
are shown in Table 3. For all PPI networks, a number of 
functional units are detected: for example, for Homo 
Sapiens, five different functional units (group of proteins) 
are revealed by our community analysis. The modularity 
scores quantify the degree of cohesiveness (tightly 
coupledness) of protein in these communities. We can 
further inspect the community structures visually with 
Gephi, as shown in Figure 3. Gephi supports interactive 
visualisation– for example, the neighbourhood of a 
particular node can be zoomed in and inspected for details. 
Further, we also decompose the graph into different 
connected components, when available, to find their 
properties. The component statistics reveal whether the 
network consists of a single or multiple connected 
component, as shown in Table 2. For example, Homo 
Sapiens has a single connected component, whereas the 
Albugo Laibachii network consists of several components. 
Another important neighbourhood and subgraph based 
metric is k-coreness. We also investigate kcores of different 
networks. Table 2 reports the maximum coreness for each 
of the five PPI networks. Homo Sapiens has a maximum 
coreness of 791 – it has a subgraph where each node has 
degree at least 791. This indicates a large cohesive group. 
Figure 4 shows k-core distribution of several PPI networks. 
K-core decompositions can leverage the higher-order 
structures to locate the dense subgraphs with hierarchical 
relations. 

Table 3 Community statistics of five PPI networks of our 
datasets 

Networks 
Comm. size # of 

comm. Modularity
Max. Avg. 

Acetobacterium Woodii 1,721 419 10 0.170 
Albugo Laibachii 2,281 739 9 0.159 
Bacillus Cytotoxicus 1,441 317 12 0.135 
Dinoroseobacter Shibae 1,173 595 6 0.129 
Homo Sapiens 7,296 4,013 5 0.207 

Figure 3 Community structure in a subgraph of Homo Sapiens 
PPI network 

 
Note: Node colours are based on community 

membership and node sizes on degrees. The plot is 
generated by Gephi and can further be 
interactively investigated. 

Figure 4 Kcore distribution of three PPI networks, (a) Homo Sapiens (b) Dinoroseobacter Shibae (c) Albugo Laibachii (see online version 
for colours) 

   
 (a) (b) (c) 

Note: Coreness is suggestive of the existence of cohesive group and neighbourhood. All the above networks have large coreness 
consisting of a large portion of nodes. 
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Figure 5 Degree distribution of three PPI networks, (a) Homo Sapiens (b) Dinoroseobacter Shibae (c) Albugo Laibachii (see online 
version for colours) 

   
 (a) (b) (c) 

Note: There are few nodes with large degress. However, most of the nodes have small degrees. 

Figure 6 CC histogram of three PPI networks, (a) Homo Sapiens (b) Dinoroseobacter Shibae (c) Albugo Laibachii (see online version  
for colours) 

   
 (a) (b) (c) 

Note: Most nodes have the clustering coefficients around the global average. 
 

5.3 Analysis of local metrics 
We computed several local metrics such as clustering 
coefficient (CC) on nodes, degree distribution, expanding 
the neighbourhood of a node (seed expansion), to find 
properties on individual nodes. Figure 5 shows that all 
networks have few high degree nodes whereas most of the 
nodes have small degrees. Figure 6 shows the CC 
distribution of three PPI networks. Most of the nodes 
(proteins) have clustering coefficients centred around the 
global average, even though a small percentage of nodes 
have large clustering coefficients. Running local metrics can 
reveal further insights about an individual node and its 
neighbourhood. 

5.4 Detecting central nodes 
The presence of central ‘hub’ regulators is a prominent 
feature in biological networks (Schwikowski et al., 2000). 
Such nodes make especially attractive drug targets, because 
they are often central to multiple biochemical pathways 
involved in processes like cell proliferation (Hopkins, 
2008). The case is similar to social networks, where nodes 
with high centrality can be called central individuals, and 
are important to graph propagation processes, such as gossip 
(Banerjee et al., 2014). Along the same spirit, we compute 
various centrality metrics for PPI networks to find 
influential regions. We present below our experiment on 
Homo Sapiens dataset for betweenness, closeness and 
degree centrality. 

5.4.1 Cross-checking central nodes for Homo 
Sapiens 

We found that the following three proteins have the highest 
centrality scores for Homo Sapiens: ENSP00000344818 
(UBC protein), ENSP00000351686 (PRDM10 protein), and 
ENSP00000328973 (TSPO protein) (shown in Table 4). 
The existing literature of PPI supports the importance of the 
above three proteins. Ubiquitin C (UBC) protein, as its 
name suggests, is a protein available ubiquitously around 
the eukaryotic tissues. This explains the higher value of 
betweenness centrality for this protein. UBC protein is 
encoded by the UBC gene which regulates cellular ubiquitin 
levels under stress (Wiborg et al., 1985). UBC protein 
contributes to liver development and hence, lack of UBC 
genes in unborn foetuses leads to embryonic lethality (Ryu  
et al., 2007). PRDM10 is a protein that has been linked  
to the transcriptional regulation (https://string-db.org/cgi/ 
network.pl?taskId=eU6OEL2pwmaP). Some studies on 
mice have indicated that this may also help in the 
development of the Central Nervous System (https://www. 
ncbi.nlm.nih.gov/gene/56980). TSPO protein, encoded by 
the TSPO gene, is found in the outer mitochondrial 
membrane. Generally, TSPO has been linked with 
cholesterol transport with mixed evidence (Lacapere and 
Papadopoulos, 2003) and has also been associated with 
immune response (Pawlikowski, 1993) and heart regulation 
(Qi et al., 2012) depending on the kind of tissue it is 
working in. 
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Table 4 Top three proteins based on centrality metrics 

Proteins Betweenness Closeness Degree 

ENSP00000344818 0.0798 0.6949 0.5639 
ENSP00000351686 0.0094 0.6014 0.3425 
ENSP00000328973 0.0082 0.5907 0.3129 

5.5 Detailed analysis on density, connectivity and 
path 

Based on the earlier results on central nodes and global 
metrics, we investigated further on density and 
connectedness. The density for an undirected graph is 

2 ,
( 1)

md
n n

=
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where n is the number of nodes and m is the number of 
edges. The density is 0 for a graph without edges and 1 for a 
complete graph. The density of multigraphs can be higher 
than 1. 

Table 5 Graph density of the PPI networks 

Networks Graph density 

Acetobacterium Woodii 0.0625809 
Albugo Laibachii 0.0843773 
Bacillus Cytotoxicus 0.0421796 
Dinoroseobacter Shibae 0.0648774 
Homo Sapiens 0.0230760 

Clustering coefficient of node v is computed as follows: 
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where Tv is the number of triangles containing node v. The 
verage clustering coefficient for the graph G is, 
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where n is the number of nodes in G. 
Table 5 demonstrates density of five PPI networks of 

our datasets. This shows that the Homo sapiens graph has 
specially lesser density than the other ones and the average 
clustering coefficient is also lower. 

Table 6 Dijkstra’s path length between pair of central proteins 
of Homo Sapiens network 

Source Destination Path length 

ENSP00000344818 ENSP00000351686 323.0 
ENSP00000344818 ENSP00000328973 312.0 
ENSP00000351686 ENSP00000328973 300.0 

 

Focusing on the three main proteins from our earlier tests 
(Table 4), we calculate Dijkstra’s path and Dijkstra’s path 
lengths for them between each pair of proteins to find how 
much they interacted between each other. We also calculate 
the clustering per node for the three proteins scoring the 
highest centrality values. 

Figure 7 Visualisation of clustering coefficients by node of 
Homo Sapiens PPI network (see online version  
for colours) 

 
Note: Node colours are based on the local clustering 

coefficient (the darker, the higher) and node sizes 
on degrees. The plot is generated by Gephi and 
can further be interactively investigated by 
zooming, stretching, and reshaping. 

Table 7 Dijkstra’s path between pair of central proteins of 
Homo Sapiens network 

Source Destination Path 

ENSP00000344818 ENSP00000351686 344,818, 216,373, 
351,686 

ENSP00000344818 ENSP00000328973 344,818, 270,570, 
328,973 

ENSP00000351686 ENSP00000328973 351,686, 323,967, 
328,973 

Note: Source and destination can be interchanged as we 
considered undirected paths. The path in column 
three is given by protein IDs where the prefix 
ENSP00000 is omitted for brevity. 
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Table 8 Clustering coefficient per node (local CC) for the 
central proteins of Homo Sapiens network 

Protein ID Local CC 

ENSP00000344818 0.0437986 
ENSP00000328973 0.0700089 
ENSP00000351686 0.0719750 

Looking at the clustering per node results in Table 8 (also in 
Figure 7) and comparing them with an average clustering 
coefficient in Homo sapiens, we notice that clustering 
coefficient in these three proteins are comparatively very 
small. These proteins seem to have fewer clusters around 
them and calculating and detailing those clusters by domain 
experts might bear fruitful results. 

Dijkstra’s path also shows the three other proteins that 
have low edge weights and associate these proteins with 
each other. All of the above results might be insightful to a 
domain expert (e.g., biologist) and we envision that this tool 
(by generating such results) can be proven useful for 
multidisciplinary research with large-scale biological data, 
especially protein interaction data. 

5.6 Scalability analysis 
We use scalable algorithmic methods for computing various 
network metrics. For example, we adapt the methods in 
Arifuzzaman et al. (2013) to count triangular motifs. The 
speedup factors for this method on three PPI networks are 
given in Figure 8. The method shows good speedups and 
scales almost linearly to a large number of processors. In 
addition to parallel algorithms, we use efficient sequential 
methods in a task parallel fashion. We allocate multiple 
MPI processors and distribute computing kernels among 
those processors. In effect, this results in a parallel 
workflow with sequential kernels. Such task parallel design 
significantly speedup the analysis. As shown in Table 9, our 
HPC-based workflow achieves almost ten-fold speedup 
over a serial workflow with ten sequential kernels. Note that 
this speedup is in excess to what we already achieve with 
parallel methods such as triangle counting. 

Table 9 Workflow scalability: runtime performance for ten 
analysis metrics with sequential workflow and our 
HPC-based parallel workflow 

Networks 
Runtime (sec.) 

Speedup Seq. 
workflow 

Our 
workflow 

Acetobacterium Woodii 576 62 9.29 
Albugo Laibachii 820 95 8.63 
Bacillus Cytotoxicus 540 58 9.31 
Dinoroseobacter Shibae 680 72 9.44 
Homo Sapiens 1280 130 9.85 

 

Figure 8 Speedup factors of triangle counting algorithm with 
three PPI networks – Homo Sapiens (HS), 
Dinoroseobacter Shibae (DS) and Albugo Laibachii 
(AL) (see online version for colours) 

 

6 Overall capability of the tool, comparisons with 
others, and future work 

The presented tool is new on several levels. The framework 
builds upon and extends significantly the existing work on 
scalable algorithms for graph data preprocessing 
(Arifuzzaman and Khan, 2015) and mining (Arifuzzaman  
et al., 2013, 2015a), and is intended for big data 
computation in a scalable and flexible (extensible and 
sufficiently generic) way. Our tool complements the protein 
interaction literature with scalable computing methods for 
efficient analysis and visualisation. 

6.1 Big data computation 
The volume and variety of the graphs we consider here 
present real computational challenges in their processing, 
especially for the weighted and labelled graphs constructed 
from protein interactions. We utilise distributed systems and 
parallel computing to develop scalable solutions on the 
available HPC platforms. We explore parallel algorithms 
and their implementations as a way to overcome the 
computational burden placed by the need to process  
large-scale or high-volume complex networks. 

6.2 Future proofing 
The above computational framework is extensible we will 
be able to add new analysis kernels as needed. We also 
include complex workflow coordination with the 
framework. Automated reports, plots, and visualisation will 
be generated from the analyses so that a domain expert can 
detect interesting patterns, trends, and insights in real time. 
Based on initial findings, we will be able to adjust the 
granularity of the analyses and/or network data. We 
envision that the framework will create a generic 
computational toolkit for analysing PPI networks. We plan 
to create a git repository to open the tool for public access. 
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6.3 Comparison with other network analysis tools 
There exist several network analysis tools such  
as NetworkX (https://networkx.github.io/), Pajek 
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/), SNAP 
(http://snap.stanford.edu/), PEGASUS (Kang et al., 2009) 
and CINET (http://cinet.vbi.vt.edu/granite/granite.html; 
Abdelhamid et al., 2012). NetworkX is an open source 
python-based software package for studying complex 
networks. NetworkX contains a large collection of network 
algorithms. Pajek is a tool for the analysis and visualisation 
of networks having thousands to millions of vertices. 
Stanford Network Analysis Project (SNAP) is a general 
purpose network analysis library. Another toolkit Network 
Workbench provides an online portal for network 
researchers. PEGASUS is a peta-scale distributed graph 
mining system that provides large-scale algorithms for 
several graph mining tasks and runs on clouds. CINET is 
another versatile web-based tool for analysing unlabeled 
(unsigned) networks. 

All the above tools vary in generality, interface, types of 
networks they support, and the availability of HPC-based 
resources and frameworks. Many of the above tools, e.g., 
NetworkX, do not include scalable parallel algorithms or 
support scalable computing on HPC resources. Some of 
them, e.g., CINET, lack support for signed networks. Only a 
few (e.g., CINET) supports workflow coordination. To the 
best of our knowledge, the novelty of our framework comes 
collectively from its lightweight, i.e., no need for complex 
setup or installation of extraneous/expensive support tools, 
capability to work on signed and weighted networks, 
offering multi-approach with varying topological 
granularity, its simple yet efficient workflow coordination, 
and the availability and incorporation of data and  
task parallelism through the careful design of  
distributed-memory algorithms and other HPC techniques. 
The framework is also extensible and sufficiently generic 
for many related applications. We are not aware of any 
previous system that supports HPC-based analytics for PPI 
networks with such flexibility and efficiency. 

We also want to comment that our tool is not a 
competitor of other existing graph analysis tools. Our tool 
complements the capabilities of existing tools in several 
aspects, is extensible, and can integrate many open-source 
scalable algorithms. 

6.4 Future work 
If we can avail further data related to drugs, diseases, and 
protein pathways, together with PPI networks, we will be 
able to provide a comprehensive case study of the relevance 
of PPI analytics to drug discovery. Our future work is to 
demonstrate how drug target discovery can be mapped to 
network process of a PPI network. For this, as the next step,  
we will work with drug target data from DrugBank 
(http://www.drugbank.ca/) database and cancer gene data 
from the Sanger Institute’s COSMIC database 
(http://cancer.sanger.ac.uk/cosmic). We also plan to initiate 
collaborations with experts from biological and life sciences 

so that the results from our tool can further be analysed in 
light of biomolecular contexts. 

7 Conclusions 
Interests for PPI networks are growing in biological and 
medical sciences applications for studying diseases and 
discovering drugs. The emergence of large volume of PPI 
datasets challenges efficient and scalable mining of such 
networks. In this paper, we presented an analytical 
framework for PPI networks, which addresses the 
challenges of big data through a flexible tool based on 
parallel algorithms and other HPC techniques. We 
demonstrated the scalability and application of the tool on 
several large PPI networks consisting of millions of edges 
from a variety of sources. Our tool is effective in identifying 
central nodes and other interesting patterns. We also 
introduced different level of analysis granularity to 
efficiently work with available resources. The tool is also 
lightweight, flexible, and extensible. We believe that this 
tool will be useful in tackling emerging large volume of PPI 
networks (and other related biological networks) and 
gaining useful insights from them. 
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