
176 Int. J. Big Data Intelligence, Vol. 6, Nos. 3/4, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

Scalable mining, analysis and visualisation of
protein-protein interaction networks

Shaikh Arifuzzaman* and Bikesh Pandey
Department of Computer Science,
University of New Orleans,
New Orleans, LA 70148, USA
Email: smarifuz@uno.edu
Email: bpandey@uno.edu
*Corresponding author

Abstract: Proteins are linear chain biomolecules that are the basis of functional networks in all
organisms. Protein-protein interaction (PPI) networks are networks of protein complexes formed
by biochemical events and electrostatic forces. PPI networks can be used to study diseases and
discover drugs. The causes of diseases are evident on a protein interaction level. For instance,
elevation of interaction edge weights of oncogenes is manifested in cancers. The availability of
large datasets and need for efficient analysis necessitate the design of scalable methods
leveraging modern high-performance computing (HPC) platforms. In this paper, we design a
lightweight framework on a distributed-memory parallel system to study PPI networks. Our
framework supports automated analytics based on methods for extracting signed motifs,
computing centrality, and finding functional units. We design message passing interface
(MPI)-based parallel methods and workflow, scalable to large networks. To the best of our
knowledge, these capabilities collectively make our tool novel.

Keywords: protein interaction; biological networks; network visualisation; massive networks;
HPC systems; network mining.

Reference to this paper should be made as follows: Arifuzzaman, S. and Pandey, B. (2019)
‘Scalable mining, analysis and visualisation of protein-protein interaction networks’, Int. J. Big
Data Intelligence, Vol. 6, Nos. 3/4, pp.176–187.

Biographical notes: Shaikh Arifuzzaman is an Assistant Professor of Computer Science at the
University of New Orleans (UNO), USA. His research interests are in big data analytics, parallel
algorithms, network science, and high-performance computing. Earlier, he obtained his PhD in
Computer Science from Virginia Tech where he worked in Network Dynamics and Simulation
Science Lab (NDSSL). He also worked in Data Sciences and Cyber Analytics Department at
Sandia National Laboratories, CA, USA. At UNO, he leads the big data and scalable computing
research group and currently works on parallel graph algorithms, big data security, and several
data-intensive interdisciplinary problems.

Bikesh Pandey graduated from the University of New Orleans with a major in Computer Science
with a concentration in Game Development and a minor in Mathematics. His research included
research on large protein networks, image processing and designing algorithms. Prior to this
paper, he has worked on designing motion tracking system that can track movements across
lenses.

This paper is a revised and expanded version of a paper entitled ‘Scalable mining and analysis of
protein-protein interaction networks’ presented at 3rd IEEE International Conference on Big
Data Intelligence and Computing (DataCom), Orlando, FL, 6–10 November 2017.

1 Introduction
Studying network (graph) data is fundamental in diverse
scientific disciplines since network is a powerful abstraction
for representing interactions among entities in a system
(Newman, 2003; Girvan and Newman, 2002). The entities
and their interactions are represented as nodes (vertices) and
links (edges) of a network, respectively. Examples include
biological networks (Girvan and Newman, 2002; Chen and
Lonardi, 2009), the web graph (Broder et al., 2000), various
social networks (Kwak et al., 2010), and many other

information networks. Mining biological data is of growing
interest since they represent fundamental bio-chemical
mechanisms in a cell or in a living organism (Chen and
Lonardi, 2009). Due to the advancement of data and
computing technology, biology and related disciplines
generate a large volume and variety of data (Girvan and
Newman, 2002), many of them are about proteins and
protein-protein interactions (PPI) (Ewing et al., 2007). PPI
networks offer an excellent chance to study disease
dynamics in molecular level and shed light on drug

 Scalable mining, analysis and visualisation of protein-protein interaction networks 177

discovery (Bader et al., 2004; Han et al., 2004;
Schwikowski et al., 2000). However, large volume and
variety of PPI datasets pose computational challenges,
which motivates for scalability, both in algorithmic methods
and analysis workflow. In this paper, we develop an
HPC-based framework to apply network-centric approaches
to study PPI networks.

1.1 Studying PPI networks: significance and
relevance

Proteins are linear chain biomolecules that are the basis of
functional networks in all organisms. Aspects of their
interactions are of growing interest (Rual et al., 2005; Stelzl
et al., 2005). PPI networks can be used to study disease and
for drug discovery (Altieri, 2008; Brastianos et al., 2015).
They also reveals the causes of diseases – for instance, most
cancers are caused by increasing interaction edge weights of
oncogenes and decreasing interaction edge weights of
tumour suppressor genes (Altieri, 2008; Chin et al., 2004).
Most human diseases are thought to have fewer than five
causal PPIs; many have two or fewer causal interactions
(Hopkins, 2008). Further, PPI networks help in drug
discovery. Many approved drugs target a particular PPI
(Altieri, 2008; Hopkins, 2008).

PPI networks have been shown to be relevant to
treatment of diseases and drug discovery (Altieri, 2008;
Hopkins, 2008). Further, there has been a line of work
focusing on purely the bio-chemical aspect of PPIs. Unlike
those works, this paper stresses on computing (mining and
analysis) aspect of knowledge discovery and demonstrate
how we can relate our results to biochemical contexts.
There have been earlier works suggestive of the
effectiveness of network-based approaches for analysing
PPIs (Altieri, 2008; Hopkins, 2008). Local and global PPI
network structural motifs suggest therapeutic strategies. The
centrality hub nodes of PPI networks can be good
candidates for drug target. Works such as (Altieri, 2008) use
both global PPI information and pathway knowledge to
reveal more bio-chemical insights. Most work related to
network analysis do not consider signed and weighted
networks (Suri and Vassilvitskii, 2011; Chiba and
Nishizeki, 1985). However, PPI networks are both signed
and weighted. Moreover, many existing methods are not
scalable to large networks (Fortunato and Lancichinetti,
2009; http://vlado.fmf.uni-lj.si/pub/networks/pajek/;
https://networkx.github.io/). Scalable parallel and
sampling-based algorithms (Arifuzzaman and Khan, 2015;
Arifuzzaman et al., 2013, 2015a, 2015b) are required to deal
with large network data.

1.2 Unique challenges for scalable analysis
In the era of big data, we are deluged with network data
from a wide range of areas. The volume of biological and
bio-medical data is also growing rapidly. The string
repository (https://string-db.org/) has PPI networks with
9.6M proteins and 1,380M interactions. There are many

other public repositories (https://thebiogrid.org/) that share
large biological datasets. This emergence of large-scale
network data motivates us to find scalable algorithms and
tools for extracting useful intelligence. In some cases, these
networks do not fit into the main memory of a single
computing node. Further, an algorithm having a high
computational complexity might fail to work on networks
with a few millions edges.

1.3 Contributions of this work
In this paper, we describe our framework for highly scalable
and rigorous methods for mining and analysing PPI
networks. To address the issues emerged from large-scale
datasets, we develop a workflow consisting of scalable
labelled graph analysis algorithms leveraging large
distributed multi-core clusters. The key contributions are as
follows.

1 A high performance computing-based tool that scales:
the tool includes scalable parallel methods (algorithms)
for discovering functional units and extracting motifs in
PPI networks. Our methods and workflow scale to large
networks for a wide variety of network metrics.

2 An extensible framework that can integrate new
methods: the tool currently includes many mining and
analysis methods including counting triangular motifs,
community detection, computing diameter, and several
centrality and path-based metrics. Any new methods
can easily be integrated with the tool.

3 Identification of relevance to biological or bio-medical
contexts of PPI: our methods for signed motif
extraction, centrality computation, and discovery of
functional units can be used to identify target proteins
and important hubs. Such network motifs and
properties of a PPI network have useful implications for
drug target discovery.

4 Promotion of interdisciplinary collaboration: we
anticipate this tool can facilitate multidisciplinary
investigations consisting of experts from both
computational and biological domains. Further, the tool
can essentially be generalised to other related
applications in neuroscience, medical informatics, and
likes.

The rest of the paper is organised as follows. The datasets
and computing resources are briefly described in Section 2.
We present the overview and architecture, capabilities, and
evaluation of our framework in Sections 3, 4 and 5,
respectively. We compare our tool with existing network
analysis tools in Section 6. We conclude in Section 7.

2 Preliminaries
We present our datasets, computational model, and
resources below.

178 S. Arifuzzaman and B. Pandey

2.1 Notation and definitions
The given network is denoted by G(V, E), where V and E
are the sets of vertices and edges, respectively, with
m = | E | edges and n = | V | vertices labelled as 0, 1, 2, …,
n – 1. We use the words node and vertex interchangeably.
We assume that the input network is undirected. If (u, v) ∈
E, we say u and v are neighbours to each other. The set of
all neighbours of v ∈ V is denoted by ,vN i.e., vN = {u ∈
V | (u, v) ∈ E}. The degree of v is dv = | | .vN

We will also introduce notations in later sections when
required. We use several network analysis algorithms
including counting triangles. A triangle is a set of three
nodes u, v, w ∈ V such that there is an edge between each
pair of these three nodes, i.e., (u, v); (v, w), (w, u) ∈ E. The
number of triangles incident on v, denoted by Tv, is same as
the number of edges among the neighbours of v, i.e.,

{ }(,) : , .v vT u w E u w= ∈ ∈N

To discuss the distributed-memory system we use, let P be
the number of processors used in the computation, which
we denote by p0, p1, …, pP–1 where each subscript refers to
the rank of a processor.

We use K, M and B to denote thousands, millions and
billions, respectively; e.g., 1B stands for one billion.

2.2 Datasets
We study PPI networks from StringDB database
(https://string-db.org/) for several organisms. The networks
are represented as edgelists with several interaction values
based on various evidences such as interaction and
coexpression scores. The datasets we use are summarised in
Table 1. These datasets contain an edge weight valued on a
scale of 0–1,000 between two proteins. This weight is the
overall interaction score – sum of all the categorical scores
such as coexpression score, neighbourhood score,
experimental score, and several other values given by the
database. The datasets identify proteins using unique protein
identifiers called Ensembl Protein IDs determined by
Ensembl.org. Further details on these proteins and also
other genes can also be found at Ensembl Genome Browser
(http://www.ensembl.org).

We also experimented on other datasets found
from National Center for Biotechnology Information

(https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/
hiv-1/interactions/browse/) and BioGrid (https://thebiogrid.
org/). Many of these datasets have no quantifiable
interaction scores that can be further analysed. Even though
we experimented on datasets from several sources, many of
them are not presented in this paper for brevity.

2.3 Computation model and resources
The parallel algorithms our tool uses were developed for
message passing interface (MPI)-based distributed-memory
parallel systems. Each processor has its own local memory.
The processors do not have any shared memory, and they
communicate via exchanging messages. Compute resources
are the physical resources on which individual jobs are
executed. Our current resources include two HPC Linux
clusters at Louisiana Optical Network Infrastructure (LONI)
(https://loni.org/) and our host institution. Loni QueenBee
system is a 50.7 TFlops peak performance 680 compute
node cluster running the Red Hat Enterprise Linux 4
operating system. Each node contains two Quad Core Xeon
64-bit processors operating at a core frequency of 2.33 GHz.
The compute cluster at our host institution is a small cluster
with two large-memory computing nodes, each with 16
cores and 512 GB of RAM, connected by QDR infiniband
interconnect and running Linux operating system.

Potential compute resources include any traditional HPC
clusters, compute grids, clouds (e.g., Amazon Web
Services), or dedicated servers with MPI libraries. A typical
compute resource runs our network analysis kernels. Our
middleware (control unit) and data and visualisation units
also run on compute resources.

3 New generation graph analytical tool for PPI
Networks

The use of network (graph) analysis for understanding
protein interactions and their implication on broader aspects
of biological process in organisms is still nascent (Altieri,
2008; Hopkins, 2008), and more studies are needed to
demonstrate a clearer picture of results. In this paper, we
hope to contribute to this literature by developing an
HPC-based tool that helps assess both node and
clustering-based characterisation of PPI networks.

Table 1 A subset of datasets used in our experiments

Network Nodes Edges Source

Homo Sapiens 19,247 4,274,001 StringDB (https://string-db.org/)
Acetobacterium Woodii 3,439 369,956 StringDB (https://string-db.org/)
Albugo Laibachii 5,849 1,443,060 StringDB (https://string-db.org/)
Dinoroseobacter Shibae 3,567 412,618 StringDB (https://string-db.org/)
Bacillus Cytotoxicus 3,765 298,873 StringDB (https://string-db.org/)

 Scalable mining, analysis and visualisation of protein-protein interaction networks 179

Figure 1 Architectural overview of our framework for scalable mining, analysis, and visualisation of PPI networks

The presented tool is a first on several levels. The
framework builds upon and extends significantly the
existing work on scalable algorithms for graph data
preprocessing (Arifuzzaman and Khan, 2015), counting
triangular motifs (Arifuzzaman et al., 2013), and efficient
parallel load balancing schemes (Arifuzzaman et al.,
2015a). It complements the protein interaction literature
with scalable algorithmic methods for efficient analysis. It is
well established that causation of disease and drug
discovery have significant correlation with network
properties of nodes in PPI networks (Stelzl et al., 2005;
Altieri, 2008; Hopkins, 2008).

Based on the prior work of the authors on
network-centric algorithms, for both sequential and parallel
settings, and by leveraging open-source network analysis
libraries such as SNAP (http://snap.stanford.edu/) and
NetworkX (https://networkx.github.io/), we build an
extensible computational framework for mining and
analysing PPI networks.

3.1 Architectural overview of the tool
Our framework for analysing PPI networks is built on a
distributed system consisting of a set of well-defined units
(and services). The framework incorporates a Linux-based
architecture with middleware developed with shell-script
and C++-based code and scripts. Our network analysis
kernels are mostly developed in C++ with MPI libraries. We
also have python-based application code and scripts. For job
submission, we use moab qsub scripts. All functional units
are coupled loosely so as to support extensibility and
modifications. Figure 1 depicts the high-level architecture
of the framework. We discuss the key components below.

1 Control unit: the control unit employs the central
communication and coordination mechanism for our
tool. It provides asynchronous, loose coupling of the
system components. The unit initiates a workflow – put
requests for executing jobs. Every analysis task is
transformed into a job consisting of an analysis kernel.
Additionally, the control unit facilitates task parallelism
by distributing different serial tasks among separate
MPI processes. Requests are handled and scheduled by
PBS qsub scripts using moab scheduling mechanism.
The control unit specifies the details about how a set of
analyses is to be fulfilled, in the form of an embedded
workflow. An analysis request contains the parameters

to run the analysis. The request also contains the
specification for the workflow to run, including both
pre- and post-processing and inspecting the output.
Based on this inspection, a new workflow can be
initiated with a new set of parameters and analysis
kernels.

2 Computational resource unit: once execution requests
are identified, they are run on a specific physical
machine. It is done by constructing system-specific job
submission scripts and monitoring the progress of the
execution. To achieve larger scalability, we need to
speed up the analysis significantly and make use of the
computing clusters efficiently. We design MPI-based
parallel computing techniques to scale our methods to
large networks and to a large number of processors.
Our motif counting methods are based on efficient
MPI-based algorithms (Arifuzzaman et al., 2013). To
execute a bunch of sequential analysis kernel, we
design task parallelism: we distribute multiple kernels
among a set of MPI processes. Since our tool is
extensible, new methods (either serial or parallel) can
easily be integrated. Our scripts automatically assign
them to appropriate number of processors guided by the
metadata of the executable method.

3 Analysis unit: analysis unit is the computational engine
behind mining PPI networks. This unit consists of
scalable network analysis kernels, both the ones
developed from scratch for this tool and from
open-source graph analysis algorithms. Since the
description of this unit is rather involved, we present it
in the next section separately. In conjunction to analysis
unit, we have a data management sub-unit: this unit is
responsible for managing the data resources that reside
on a system. The unit also deals with transferring
non-local datasets, cleaning datasets, applying
scores/thresholds, converting formats, storing or
formatting results, etc. There are several high
performance services developed for data management.
For instances, we implement parallel read, where
processors can read disjoint portions of a file in
parallel.

4 Data report or visualisation unit: our report and
visualisation unit is based on gnuplot tool
(http://www.gnuplot.info). We generate numerous

180 S. Arifuzzaman and B. Pandey

statistics plots and distribution using gnuplot. Such
capability is integrated with analysis unit, so generation
of these tools are automated. Adding a new plot and
visualisation capability is straightforward and requires
little C++ coding. A new visualisation is modularised
(and thus flexible and easy to maintain) by the virtue of
being a C++ object.

We also use a java-based visualisation library Gephi
(https://gephi.org/) for generating additional
visualisations. Gephi is open source, modular, and
easily extensible through plugins. It is also rich in
visualisation features. To create a visualisation of a
network, the network is converted into gexf format, an
XML representation. The format allows for
dynamically adding multiple attributes to nodes and
edges. Any layout algorithms can be used to determine
object locations. Statistics such as betweenness, page
rank, and degree can be applied to decide the size and
colour of the nodes and edges. Visualisation by Gephi
can give useful insights into a network by highlighting
important nodes, edges and communities in a graph or a
subgraph. The primary features and benefits of such
visualisation are as follows.
• Convenient layouts: Gephi provides several layout

algorithms from the literature such as Force Atlas,
Yifan Hu and Fruchterman Reingold
(https://gephi.org/).

• Feature-based organisation: the node sizes can be
proportional to their degrees, betweenness
centrality, or other network metric.

• Subgraph visualisation: it offers visualisation of
subgraphs that is very useful, especially for
massive networks. We have developed several
heuristics for choosing subgraphs. First, find a seed
(by random seed, central nodes, etc.). Second,
expand the seed by a BFS traversal.

Using Gephi orthogonal to gnuplot gives the user additional
capabilities for visual analysis. The inputs and parameters
needed for Gephi is automatically computed by our tool.
The user can interact with the tool to configure different

visualisations. Note that our framework allows for adding
any open source visualisation tool with little coding effort.

4 Network analysis kernels
A suite of graph metrics (or analysis kernels) is used as the
computational engine behind our framework. These kernels
are of varying levels of complexity and computational
intensity. We classify them into three categories based on
the topological granularity they focus on – global,
community, and local, as shown in Figure 2. Note that our
framework is readily extensible to include any graph
kernels. Further, how many of these kernels will be used for
a particular investigation depends on the requirements of the
analysts.

We use the global metrics to measure the high-level
properties of the PPI networks. These metrics are mostly
less expensive and are intended to work on the entire graph.
For more expensive and complex measures, we use parallel
implementation of them. As instance, our tool adapts the
parallel algorithms presented in Arifuzzaman et al. (2013,
2015a, 2015b) to find signed triangular motifs at scale.
These algorithms are based on efficient partitioning and
load balancing schemes and scale to large networks.

We use another suite of metrics to investigate PPI
networks at community level. Complex systems are
organised in clusters or communities, each having a distinct
role or function. In the corresponding network
representation, each community appears as a dense set of
nodes having higher connection inside the set than outside.
Communities reveal the organisation of complex systems
and their function. For PPI networks, a community is often
interpreted as a functional unit, and thus, community
detection is also another important analysis kernel for PPI
networks. We use several scalable algorithms for
community detection such as Louvain (Blondel et al., 2008)
and label propagation (Raghavan et al., 2007). We also use
several related analysis kernels such as k-core
decompositions. Such decompositions can leverage the
higher-order structures to locate the dense subgraphs with
hierarchical relations.

Figure 2 Schematic diagram of our analysis workflow starting from data preprocessing to the generation of reports and visualisation

Note: The workflow supports a multi-level approach with a variety of analysis kernels working on different topological

granularity

 Scalable mining, analysis and visualisation of protein-protein interaction networks 181

Computation on individual nodes is done by using local
metrics. Local metrics are usually the slowest among the
kernels. We implemented several distribute-memory
algorithms such as computing local clustering coefficients
and local Jaccard indices. We are also in the process of
adding more parallel kernels. Serial analysis kernels can
also be used using task parallel execution as discussed in
Section III. Further, it is also an attractive option to first
identify important subgraphs by community analysis and
then apply the local metrics on the subgraphs (which is
smaller than the original graph). Centrality metrics such as
local between centrality and closeness centrality are also
important local metrics for identifying central nodes of
bio-chemical significance.

4.1 A multi-level approach
Our workflow suggests a multilevel approach for efficient
analysis: It is generally advised to start analysis with the
coarsest (global) and becoming finer at each iteration. Any
structure identified as interesting at a coarse level is passed
down to be analysed at the next finer level. We generally
identify three levels, based on the topological granularity
levels, as mentioned above as global, community, and local
levels. At the coarsest level, only the global metrics can be
applied on the whole network. Communities and local
metrics on individual nodes are not considered at this stage.
We use efficient and scalable global metrics. Next,
community-level metrics are computed. Individual
communities can then be locally analysed by applying local
metrics. Note that such multi-level approach allows to work
with even very scare resources (a commodity laptop) in a
computationally efficient way. However, our parallel
algorithms and scalable HPC-based framework allows to
apply local metrics on the entire networks. Hence the
analysts are not limited to follow the multi-level approach in
a strict order, rather the approach serves as an organisational
or workflow suggestion.

As for the analysis automation, a simple self-descriptory
script serves as the starting point of the workflow. It is
straightforward to specify the analysis kernels and input
network to work on. After initialising the workflow, all the
remaining steps such as data pre-processing, analysis, and
generation of reports and plots are fully automated. The

end-user can inspect the reports and plots and then re-run
analyses with different parameters and kernels, if needed.

5 Experimental results and implications
We provide a flexible tool to support scalable data analytics
for PPIs. The tool reveals useful patterns and properties
from PPI networks by using appropriate mining and
analysis techniques. We present a summary of computed
network metrics, their biological relevance, scalability of
the tool, and a comparison with previous tools below.

5.1 Computing global network metrics
Our global analysis consists of metrics such as finding
general statistics (e.g., number of edges, nodes), finding
patterns and motifs, e.g., counting triangles, and finding
diameter of the networks. Table 1 shows the number of
proteins and interactions for five PPI networks. Homo
Sapiens dataset has a large number of proteins and their
identified interactions. Albugo Laibachii dataset also has
over a million protein interactions. We present several
analyses on all five datasets of Table 1.

5.1.1 Finding patterns or motifs
Network motifs of size 3 and 4 are overrepresented in
real-world networks generated through processes such as
hyperlink creation, language formation, and personal social
network propagation. Such structures in biological
functional networks are suggestive of processes such as
positive and negative feedback loops (Ewing et al., 2007;
Schwikowski et al., 2000), which have important
implications for therapeutic strategies. We enumerate signed
triangles for networks datasets of Table 1. As shown in
Table 2, Homo Sapiens and Albugo Laibachii networks
have 321.6M and 215.12M triangles, respectively, which
indicates a high triangle density (triangles per node). In fact,
Algugo Laibachii has the highest triangle density among the
five datasets. Table 2 also shows average clustering
coefficients (CC) of the five datasets. These values are
large, indicating the proteins interact with the
neighbourhood quite closely.

Table 2 Network properties of our datasets: degree, components, coreness, triangles, clustering coefficients (CC), and diameter
statistics

Networks
Degree Components

Max. k-core Triangles Avg. CC Diameter
Min. Max. Avg. # of comp. Max. size

Acetobacterium Woodii 1 2,075 172.51 1 4,192 146 6.26M 0.191 6
Albugo Laibachii 1 2,676 493.44 21 5,798 566 215.12M 0.476 6
Bacillus Cytotoxicus 1 1,746 159.51 2 3,803 146 6.41M 0.226 5
Dinoroseobacter Shibae 1 2,371 229.04 1 3,574 172 13.06M .297 5
Homo Sapiens 1 10,853 444.12 1 19,247 791 321.6M 0.231 6

182 S. Arifuzzaman and B. Pandey

5.1.2 Computing diameters
We compute diameters to find insights about reachability
and ease of communication and diffusion in PPI networks.
The diameters are less than 6 for all networks (Figure 2),
suggesting good reachability in the network. Any
biochemical process originating in a particular protein can
reach to the farthest protein in only six hops. Domain
experts may find this information useful in designing drugs
for target proteins. Our implementation of diameter kernel is
adapted from SNAP library (http://snap.stanford.edu/).

5.2 Community and subgraph-based analysis
We execute community detection methods to reveal
functional units in PPI networks. The community statistics
are shown in Table 3. For all PPI networks, a number of
functional units are detected: for example, for Homo
Sapiens, five different functional units (group of proteins)
are revealed by our community analysis. The modularity
scores quantify the degree of cohesiveness (tightly
coupledness) of protein in these communities. We can
further inspect the community structures visually with
Gephi, as shown in Figure 3. Gephi supports interactive
visualisation– for example, the neighbourhood of a
particular node can be zoomed in and inspected for details.
Further, we also decompose the graph into different
connected components, when available, to find their
properties. The component statistics reveal whether the
network consists of a single or multiple connected
component, as shown in Table 2. For example, Homo
Sapiens has a single connected component, whereas the
Albugo Laibachii network consists of several components.
Another important neighbourhood and subgraph based
metric is k-coreness. We also investigate kcores of different
networks. Table 2 reports the maximum coreness for each
of the five PPI networks. Homo Sapiens has a maximum
coreness of 791 – it has a subgraph where each node has
degree at least 791. This indicates a large cohesive group.
Figure 4 shows k-core distribution of several PPI networks.
K-core decompositions can leverage the higher-order
structures to locate the dense subgraphs with hierarchical
relations.

Table 3 Community statistics of five PPI networks of our
datasets

Networks
Comm. size # of

comm. Modularity
Max. Avg.

Acetobacterium Woodii 1,721 419 10 0.170
Albugo Laibachii 2,281 739 9 0.159
Bacillus Cytotoxicus 1,441 317 12 0.135
Dinoroseobacter Shibae 1,173 595 6 0.129
Homo Sapiens 7,296 4,013 5 0.207

Figure 3 Community structure in a subgraph of Homo Sapiens
PPI network

Note: Node colours are based on community

membership and node sizes on degrees. The plot is
generated by Gephi and can further be
interactively investigated.

Figure 4 Kcore distribution of three PPI networks, (a) Homo Sapiens (b) Dinoroseobacter Shibae (c) Albugo Laibachii (see online version
for colours)

 (a) (b) (c)

Note: Coreness is suggestive of the existence of cohesive group and neighbourhood. All the above networks have large coreness
consisting of a large portion of nodes.

 Scalable mining, analysis and visualisation of protein-protein interaction networks 183

Figure 5 Degree distribution of three PPI networks, (a) Homo Sapiens (b) Dinoroseobacter Shibae (c) Albugo Laibachii (see online
version for colours)

 (a) (b) (c)

Note: There are few nodes with large degress. However, most of the nodes have small degrees.

Figure 6 CC histogram of three PPI networks, (a) Homo Sapiens (b) Dinoroseobacter Shibae (c) Albugo Laibachii (see online version
for colours)

 (a) (b) (c)

Note: Most nodes have the clustering coefficients around the global average.

5.3 Analysis of local metrics
We computed several local metrics such as clustering
coefficient (CC) on nodes, degree distribution, expanding
the neighbourhood of a node (seed expansion), to find
properties on individual nodes. Figure 5 shows that all
networks have few high degree nodes whereas most of the
nodes have small degrees. Figure 6 shows the CC
distribution of three PPI networks. Most of the nodes
(proteins) have clustering coefficients centred around the
global average, even though a small percentage of nodes
have large clustering coefficients. Running local metrics can
reveal further insights about an individual node and its
neighbourhood.

5.4 Detecting central nodes
The presence of central ‘hub’ regulators is a prominent
feature in biological networks (Schwikowski et al., 2000).
Such nodes make especially attractive drug targets, because
they are often central to multiple biochemical pathways
involved in processes like cell proliferation (Hopkins,
2008). The case is similar to social networks, where nodes
with high centrality can be called central individuals, and
are important to graph propagation processes, such as gossip
(Banerjee et al., 2014). Along the same spirit, we compute
various centrality metrics for PPI networks to find
influential regions. We present below our experiment on
Homo Sapiens dataset for betweenness, closeness and
degree centrality.

5.4.1 Cross-checking central nodes for Homo
Sapiens

We found that the following three proteins have the highest
centrality scores for Homo Sapiens: ENSP00000344818
(UBC protein), ENSP00000351686 (PRDM10 protein), and
ENSP00000328973 (TSPO protein) (shown in Table 4).
The existing literature of PPI supports the importance of the
above three proteins. Ubiquitin C (UBC) protein, as its
name suggests, is a protein available ubiquitously around
the eukaryotic tissues. This explains the higher value of
betweenness centrality for this protein. UBC protein is
encoded by the UBC gene which regulates cellular ubiquitin
levels under stress (Wiborg et al., 1985). UBC protein
contributes to liver development and hence, lack of UBC
genes in unborn foetuses leads to embryonic lethality (Ryu
et al., 2007). PRDM10 is a protein that has been linked
to the transcriptional regulation (https://string-db.org/cgi/
network.pl?taskId=eU6OEL2pwmaP). Some studies on
mice have indicated that this may also help in the
development of the Central Nervous System (https://www.
ncbi.nlm.nih.gov/gene/56980). TSPO protein, encoded by
the TSPO gene, is found in the outer mitochondrial
membrane. Generally, TSPO has been linked with
cholesterol transport with mixed evidence (Lacapere and
Papadopoulos, 2003) and has also been associated with
immune response (Pawlikowski, 1993) and heart regulation
(Qi et al., 2012) depending on the kind of tissue it is
working in.

184 S. Arifuzzaman and B. Pandey

Table 4 Top three proteins based on centrality metrics

Proteins Betweenness Closeness Degree

ENSP00000344818 0.0798 0.6949 0.5639
ENSP00000351686 0.0094 0.6014 0.3425
ENSP00000328973 0.0082 0.5907 0.3129

5.5 Detailed analysis on density, connectivity and
path

Based on the earlier results on central nodes and global
metrics, we investigated further on density and
connectedness. The density for an undirected graph is

2 ,
(1)

md
n n

=
−

where n is the number of nodes and m is the number of
edges. The density is 0 for a graph without edges and 1 for a
complete graph. The density of multigraphs can be higher
than 1.

Table 5 Graph density of the PPI networks

Networks Graph density

Acetobacterium Woodii 0.0625809
Albugo Laibachii 0.0843773
Bacillus Cytotoxicus 0.0421796
Dinoroseobacter Shibae 0.0648774
Homo Sapiens 0.0230760

Clustering coefficient of node v is computed as follows:

()
2 ,

1
2

v v
v

v v v

T TC
d d d

= =
− 

 
 

where Tv is the number of triangles containing node v. The
verage clustering coefficient for the graph G is,

1 ,v
v V

C C
n ∈

= 

where n is the number of nodes in G.
Table 5 demonstrates density of five PPI networks of

our datasets. This shows that the Homo sapiens graph has
specially lesser density than the other ones and the average
clustering coefficient is also lower.

Table 6 Dijkstra’s path length between pair of central proteins
of Homo Sapiens network

Source Destination Path length

ENSP00000344818 ENSP00000351686 323.0
ENSP00000344818 ENSP00000328973 312.0
ENSP00000351686 ENSP00000328973 300.0

Focusing on the three main proteins from our earlier tests
(Table 4), we calculate Dijkstra’s path and Dijkstra’s path
lengths for them between each pair of proteins to find how
much they interacted between each other. We also calculate
the clustering per node for the three proteins scoring the
highest centrality values.

Figure 7 Visualisation of clustering coefficients by node of
Homo Sapiens PPI network (see online version
for colours)

Note: Node colours are based on the local clustering

coefficient (the darker, the higher) and node sizes
on degrees. The plot is generated by Gephi and
can further be interactively investigated by
zooming, stretching, and reshaping.

Table 7 Dijkstra’s path between pair of central proteins of
Homo Sapiens network

Source Destination Path

ENSP00000344818 ENSP00000351686 344,818, 216,373,
351,686

ENSP00000344818 ENSP00000328973 344,818, 270,570,
328,973

ENSP00000351686 ENSP00000328973 351,686, 323,967,
328,973

Note: Source and destination can be interchanged as we
considered undirected paths. The path in column
three is given by protein IDs where the prefix
ENSP00000 is omitted for brevity.

 Scalable mining, analysis and visualisation of protein-protein interaction networks 185

Table 8 Clustering coefficient per node (local CC) for the
central proteins of Homo Sapiens network

Protein ID Local CC

ENSP00000344818 0.0437986
ENSP00000328973 0.0700089
ENSP00000351686 0.0719750

Looking at the clustering per node results in Table 8 (also in
Figure 7) and comparing them with an average clustering
coefficient in Homo sapiens, we notice that clustering
coefficient in these three proteins are comparatively very
small. These proteins seem to have fewer clusters around
them and calculating and detailing those clusters by domain
experts might bear fruitful results.

Dijkstra’s path also shows the three other proteins that
have low edge weights and associate these proteins with
each other. All of the above results might be insightful to a
domain expert (e.g., biologist) and we envision that this tool
(by generating such results) can be proven useful for
multidisciplinary research with large-scale biological data,
especially protein interaction data.

5.6 Scalability analysis
We use scalable algorithmic methods for computing various
network metrics. For example, we adapt the methods in
Arifuzzaman et al. (2013) to count triangular motifs. The
speedup factors for this method on three PPI networks are
given in Figure 8. The method shows good speedups and
scales almost linearly to a large number of processors. In
addition to parallel algorithms, we use efficient sequential
methods in a task parallel fashion. We allocate multiple
MPI processors and distribute computing kernels among
those processors. In effect, this results in a parallel
workflow with sequential kernels. Such task parallel design
significantly speedup the analysis. As shown in Table 9, our
HPC-based workflow achieves almost ten-fold speedup
over a serial workflow with ten sequential kernels. Note that
this speedup is in excess to what we already achieve with
parallel methods such as triangle counting.

Table 9 Workflow scalability: runtime performance for ten
analysis metrics with sequential workflow and our
HPC-based parallel workflow

Networks
Runtime (sec.)

Speedup Seq.
workflow

Our
workflow

Acetobacterium Woodii 576 62 9.29
Albugo Laibachii 820 95 8.63
Bacillus Cytotoxicus 540 58 9.31
Dinoroseobacter Shibae 680 72 9.44
Homo Sapiens 1280 130 9.85

Figure 8 Speedup factors of triangle counting algorithm with
three PPI networks – Homo Sapiens (HS),
Dinoroseobacter Shibae (DS) and Albugo Laibachii
(AL) (see online version for colours)

6 Overall capability of the tool, comparisons with
others, and future work

The presented tool is new on several levels. The framework
builds upon and extends significantly the existing work on
scalable algorithms for graph data preprocessing
(Arifuzzaman and Khan, 2015) and mining (Arifuzzaman
et al., 2013, 2015a), and is intended for big data
computation in a scalable and flexible (extensible and
sufficiently generic) way. Our tool complements the protein
interaction literature with scalable computing methods for
efficient analysis and visualisation.

6.1 Big data computation
The volume and variety of the graphs we consider here
present real computational challenges in their processing,
especially for the weighted and labelled graphs constructed
from protein interactions. We utilise distributed systems and
parallel computing to develop scalable solutions on the
available HPC platforms. We explore parallel algorithms
and their implementations as a way to overcome the
computational burden placed by the need to process
large-scale or high-volume complex networks.

6.2 Future proofing
The above computational framework is extensible we will
be able to add new analysis kernels as needed. We also
include complex workflow coordination with the
framework. Automated reports, plots, and visualisation will
be generated from the analyses so that a domain expert can
detect interesting patterns, trends, and insights in real time.
Based on initial findings, we will be able to adjust the
granularity of the analyses and/or network data. We
envision that the framework will create a generic
computational toolkit for analysing PPI networks. We plan
to create a git repository to open the tool for public access.

186 S. Arifuzzaman and B. Pandey

6.3 Comparison with other network analysis tools
There exist several network analysis tools such
as NetworkX (https://networkx.github.io/), Pajek
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/), SNAP
(http://snap.stanford.edu/), PEGASUS (Kang et al., 2009)
and CINET (http://cinet.vbi.vt.edu/granite/granite.html;
Abdelhamid et al., 2012). NetworkX is an open source
python-based software package for studying complex
networks. NetworkX contains a large collection of network
algorithms. Pajek is a tool for the analysis and visualisation
of networks having thousands to millions of vertices.
Stanford Network Analysis Project (SNAP) is a general
purpose network analysis library. Another toolkit Network
Workbench provides an online portal for network
researchers. PEGASUS is a peta-scale distributed graph
mining system that provides large-scale algorithms for
several graph mining tasks and runs on clouds. CINET is
another versatile web-based tool for analysing unlabeled
(unsigned) networks.

All the above tools vary in generality, interface, types of
networks they support, and the availability of HPC-based
resources and frameworks. Many of the above tools, e.g.,
NetworkX, do not include scalable parallel algorithms or
support scalable computing on HPC resources. Some of
them, e.g., CINET, lack support for signed networks. Only a
few (e.g., CINET) supports workflow coordination. To the
best of our knowledge, the novelty of our framework comes
collectively from its lightweight, i.e., no need for complex
setup or installation of extraneous/expensive support tools,
capability to work on signed and weighted networks,
offering multi-approach with varying topological
granularity, its simple yet efficient workflow coordination,
and the availability and incorporation of data and
task parallelism through the careful design of
distributed-memory algorithms and other HPC techniques.
The framework is also extensible and sufficiently generic
for many related applications. We are not aware of any
previous system that supports HPC-based analytics for PPI
networks with such flexibility and efficiency.

We also want to comment that our tool is not a
competitor of other existing graph analysis tools. Our tool
complements the capabilities of existing tools in several
aspects, is extensible, and can integrate many open-source
scalable algorithms.

6.4 Future work
If we can avail further data related to drugs, diseases, and
protein pathways, together with PPI networks, we will be
able to provide a comprehensive case study of the relevance
of PPI analytics to drug discovery. Our future work is to
demonstrate how drug target discovery can be mapped to
network process of a PPI network. For this, as the next step,
we will work with drug target data from DrugBank
(http://www.drugbank.ca/) database and cancer gene data
from the Sanger Institute’s COSMIC database
(http://cancer.sanger.ac.uk/cosmic). We also plan to initiate
collaborations with experts from biological and life sciences

so that the results from our tool can further be analysed in
light of biomolecular contexts.

7 Conclusions
Interests for PPI networks are growing in biological and
medical sciences applications for studying diseases and
discovering drugs. The emergence of large volume of PPI
datasets challenges efficient and scalable mining of such
networks. In this paper, we presented an analytical
framework for PPI networks, which addresses the
challenges of big data through a flexible tool based on
parallel algorithms and other HPC techniques. We
demonstrated the scalability and application of the tool on
several large PPI networks consisting of millions of edges
from a variety of sources. Our tool is effective in identifying
central nodes and other interesting patterns. We also
introduced different level of analysis granularity to
efficiently work with available resources. The tool is also
lightweight, flexible, and extensible. We believe that this
tool will be useful in tackling emerging large volume of PPI
networks (and other related biological networks) and
gaining useful insights from them.

Acknowledgements
This work has been partially supported by Louisiana Board
of Regents RCS Grant LEQSF (2017-20)-RD-A-25, College
of Sciences Internal Grant (University of New Orleans,
Spring 2017), and University of New Orleans ORSP Award
CON000000002410.

References
Abdelhamid, S.E., Aló, R., Arifuzzaman, S.M. et al. (2012)

‘CINET: a cyberinfrastructure for network science’,
Proceedings of the 8th IEEE International Conference on
e-Science (e-Science 2012), October, Chicago, IL, USA,
pp.1–8.

Altieri, D.C. (2008) ‘Survivin, cancer networks and
pathway-directed drug discovery’, Nature Reviews Cancer,
Vol. 8, No. 1, pp.61–70.

Arifuzzaman, S. and Khan, M. (2015) ‘Fast parallel conversion of
edge list to adjacency list for large-scale graphs’, 23rd High
Performance Computing Symposium.

Arifuzzaman, S., Khan, M. and Marathe, M. (2013) ‘PATRIC:
a parallel algorithm for counting triangles in massive
networks’, 22nd ACM International Conference on
Information and Knowledge Management.

Arifuzzaman, S., Khan, M. and Marathe, M. (2015a) ‘A fast
parallel algorithm for counting triangles in graphs using
dynamic load balancing’, 2015 IEEE BigData Conference.

Arifuzzaman, S., Khan, M. and Marathe, M. (2015b)
‘A space-efficient parallel algorithm for counting exact
triangles in massive networks’, 17th IEEE International
Conference on High Performance Computing and
Communications.

 Scalable mining, analysis and visualisation of protein-protein interaction networks 187

Bader, J.S., Chaudhuri, A., Rothberg, J.M. and Chant, J. (2004)
‘Gaining confidence in high-throughput protein interaction
networks’, Nature Biotechnology, Vol. 22, No. 1, pp.78–85.

Banerjee, A., Chandrasekhar, A., Duflo, E. and Jackson, M.O.
(2014) ‘Gossip: identifying central individuals in a social
network’, CoRR, abs/1406.2293.

Biogrid: Database of Protein, Chemical and Genetic Interactions
[online] https: //thebiogrid.org/ (accessed 12 April 2017).

Blondel, V., Guillaume, J., Lambiotte, R. and Lefebvre, E. (2008)
‘Fast unfolding of communities in large networks’, Journal of
Statistical Mechanics: Theory and Experiment, No 10,
p.10008.

Brastianos, P.K., Carter, S.L., Santagata, S., Cahill, D.P.,
Taylor-Weiner, A., Jones, R.T., van Allen, E.M.,
Lawrence, M.S., Horowitz, P.M., Cibulskis, K. et al. (2015)
‘Genomic characterization of brain metastases reveals
branched evolution and potential therapeutic targets’,
European Journal of Cancer, Vol. 51.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P.,
Rajagopalan, S., Stata, R., Tomkins, A. and Wiener, J. (2000)
‘Graph structure in the web’, Computer Networks, Vol. 33,
Nos. 1–6, pp.309–320.

Chen, J. and Lonardi, S. (2009) Biological Data Mining, Chapman
& Hall/CRC.

Chiba, N. and Nishizeki, T. (1985) ‘Arboricity and subgraph
listing algorithms’, SIAM Journal on Computing, Vol. 14,
No. 1, pp.210–223.

Chin, K., de Solorzano, C.O., Knowles, D., Jones, A., Chou, W.,
Rodriguez, E.G., Kuo, W-L., Ljung, B-M., Chew, K.,
Myambo, K. et al. (2004) ‘In situ analyses of genome
instability in breast cancer’, Nature Genetics, Vol. 36, No. 9,
pp.984–988.

CINET System [online] http://cinet.vbi.vt.edu/granite/granite.html
(accessed 11 April 2017).

Ensembl Genome Browser [online] http://www.ensembl.org
(accessed 2 February 2017).

Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S.,
McBroom-Cerajewski, L., Robinson, M.D., O’Connor, L.,
Li, M. et al. (2007) ‘Large-scale mapping of human
protein-protein interactions by mass spectrometry’, Molecular
Systems Biology, Vol. 3, No. 1, p.89.

Fortunato, S. and Lancichinetti, A. (2009) ‘Community detection
algorithms: a comparative analysis’, 4th International ICST
Conference on Performance Evaluation Methodologies and
Tools.

Gephi – The Open Graph Viz Platform [online] https://gephi.org/
(accessed 12 March 2017).

Girvan, M. and Newman, M. (2002) ‘Community structure in
social and biological networks’, Proceedings of the National
Academy of Sciences, Vol. 99, No. 12, pp.7821–7826.

Han, J-D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F.,
Zhang, L.V., Dupuy, D., Walhout, A.J., Cusick, M.E.,
Roth, F.P. et al. (2004) ‘Evidence for dynamically organized
modularity in the yeast protein– protein interaction network’,
Nature, Vol. 430, No. 6995, pp.88–93.

Hopkins, A.L. (2008) ‘Network pharmacology: the next paradigm
in drug discovery’, Nature Chemical Biology, Vol. 4, No. 11,
pp.682–690.

Kang, U., Tsourakakis, C.E. and Faloutsos, C. (2009) ‘Pegasus:
a peta-scale graph mining system implementation and
observations’, Proc. of the 9th IEEE International Conference
on Data Mining.

Kwak, H. et al. (2010) ‘What is twitter, a social network or a news
media?’, WWW.

Lacapere, J-J. and Papadopoulos, V. (2003) ‘Peripheral-type
benzodiazepine receptor: structure and function of a
cholesterol-binding protein in steroid and bile acid
biosynthesis’, Steroids, Vol. 68, No. 7, pp.569–585.

Louisiana Optical Network Infrastructure [online] https://loni.org/
(accessed 2 February 2017).

National Center for Biotechnology Information [online]
https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/
hiv-1/interactions/browse/ (accessed 21 June 2017).

NCBI PRDM10 [online] https://www.ncbi.nlm.nih.gov/gene/
56980 (accessed 23 June 2017).

NetworkX Tool [online] https://networkx.github.io/ (accessed 23
March 2017).

Newman, M. (2003) ‘The structure and function of complex
networks’, SIAM Review, Vol. 45, pp.167–256.

Pajek Network Analysis Tool [online] http://vlado.fmf.uni-lj.si/
pub/networks/pajek/ (accessed 23 March 2017).

Pawlikowski, M. (1993) ‘Immunomodulating effects of
peripherally acting benzodiazepines’, in Peripheral
Benzodiazepine Receptors, pp.125–135, Academic Press,
London.

Qi, X., Xu, J., Wang, F. and Xiao, J. (2012) ‘Translocator protein
(18 kDa): a promising therapeutic target and diagnostic tool
for cardiovascular diseases’, Oxidative Medicine and Cellular
Longevity, Vol. 162934, DOI: 10.1155/2012/162934.

Raghavan, U., Albert, R. and Kumara, S. (2007) ‘Near linear time
algorithm to detect community structures in large-scale
networks’, CoRR, abs/0709.2938.

Rual, J-F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T.,
Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M.,
Ayivi-Guedehoussou, N. et al. (2005) ‘Towards a
proteome-scale map of the human protein–protein interaction
network’, Nature, Vol. 437, No. 7062, pp.1173–1178.

Ryu, K. et al. (2007) ‘The mouse polyubiquitin gene UbC is
essential for fetal liver development, cell-cycle progression
and stress tolerance’, The EMBO Journal, Vol. 26, No. 11,
pp.2693–2706.

Schwikowski, B., Uetz, P. and Fields, S. (2000) ‘A network of
protein–protein interactions in yeast’, Nature Biotechnology,
Vol. 18, No. 12, pp.1257–1261.

Snap [online] http://snap.stanford.edu/ (accessed 23 February
2017).

Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H.,
Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A. and
Koeppen, S. et al. (2005) ‘A human protein-protein
interaction network: a resource for annotating the proteome’,
Cell, Vol. 122, No. 6, pp.957–968.

STRING PRDM10 [online] https://string-db.org/cgi/network.pl?
taskId=eU6OEL2pwmaP (accessed 11 April 2017).

String: Functional Protein Association Networks [online]
https://string-db.org/ (accessed 17 February 2017).

Suri, S. and Vassilvitskii, S. (2011) ‘Counting triangles and the
curse of the last reducer’, 20th International Conference on
World Wide Web.

Wiborg, O., Pedersen, M., Wind, A., Berglund, L., Marcker, K.
and Vuust, J. (1985) ‘The human ubiquitin multigene family:
some genes contain multiple directly repeated ubiquitin
coding sequences’, The EMBO Journal, Vol. 4, No. 3, p.755.

