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Big graphs (networks) arising in numerous application areas pose significant challenges for graph analysts
as these graphs grow to billions of nodes and edges and are prohibitively large to fit in the main memory.
Finding the number of triangles in a graph is an important problem in the mining and analysis of graphs. In
this article, we present two efficient MPI-based distributed memory parallel algorithms for counting triangles
in big graphs. The first algorithm employs overlapping partitioning and efficient load balancing schemes to
provide a very fast parallel algorithm. The algorithm scales well to networks with billions of nodes and
can compute the exact number of triangles in a network with 10 billion edges in 16 minutes. The second
algorithm divides the network into non-overlapping partitions leading to a space-efficient algorithm. Our
results on both artificial and real-world networks demonstrate a significant space saving with this algorithm.
We also present a novel approach that reduces communication cost drastically leading the algorithm to both
a space- and runtime-efficient algorithm. Further, we demonstrate how our algorithms can be used to list all
triangles in a graph and compute clustering coefficients of nodes. Our algorithm can also be adapted to a
parallel approximation algorithm using an edge sparsification method.
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1 INTRODUCTION

Counting triangles in a graph is a fundamental and important algorithmic problem in graph anal-
ysis, and its solution can be used in solving many other problems such as the computation of
clustering coefficient (CC), transitivity, and triangular connectivity [18, 34]. Existence of triangles
and the resulting high CC in a social network reflect some common theories of social science, e.g.,
homophily where people become friends with those similar to themselves and triadic closure where
people who have common friends tend to be friends themselves [33]. Further, triangle counting has
important applications in graph mining such as detecting spamming activity and assessing content
quality in social networks [14], uncovering the thematic structure of the web [20], query planning
optimization in databases [11], and detecting communities or clusters in social and information
networks [41].

Graph is a powerful abstraction for representing underlying relations in large unstructured
datasets. Examples include the web graph [17], various social networks [29], biological networks
[23], and many other information networks. In the era of big data, the emerging graph data is
also very large. Social networks such as Facebook and Twitter have millions to billions of users
[18, 53]. Such big graphs motivate the need for efficient parallel algorithms. Furthermore, these
massive graphs pose another challenge of a large memory requirement. These graphs may not fit
in the main memory of a single processing unit, and only a small part of the graph is available to
a processor.

Counting triangles and related problems such as computing CCs have a rich history [5, 24,
30, 38, 44, 46, 49, 52]. Despite the fairly large volume of work addressing this problem, only re-
cently has attention been given to the problems associated with big graphs. Several techniques
can be employed to deal with such graphs: streaming algorithms [1, 2, 5, 14, 26, 50], sparsification
based algorithms [52, 56], external-memory algorithms [18], and parallel algorithms [27, 49, 50].
The streaming and sparsification based algorithms are approximation algorithms [21]. Note that
approximation algorithms provide an overall (global) estimate of the number of triangles in the
graph, which might not be used to count triangles incident on individual nodes (local triangles)
with reasonable accuracy. Thus, certain local patterns such as local CC distribution can not be
computed with approximation algorithms. Exact algorithms are necessary to discover such local
patterns. External memory algorithms can provide exact solution, however they can be very I/O
intensive leading to a large runtime. Efficient parallel algorithms can solve the problem of a large
runtime by distributing computing tasks to multiple processors. Over the last couple of years, sev-
eral parallel algorithms, both shared memory and distributed memory (MapReduce or MPI) based,
have been proposed.

A shared memory parallel algorithm is proposed in [50] for counting triangles in a stream-
ing setting. The algorithm provides approximate counts. The article reports scalability using only
12 cores. Two other shared memory algorithms have been presented recently in [42, 46]: the re-
ported speedups with the first algorithm vary between 17 and 50 with 64 cores. The second article
reports speedups using only 32 cores, and the obtained speedups are due to both approximation
and parallelization. Tom et al. [51] provide shared-memory based optimization of triangle count-
ing algorithms for Intel Haswell and KNL processors. Although these algorithms are useful, shared
memory systems with a large number of processors and at the same time sufficiently large mem-
ory per processor are not widely available. Further, the overhead for locking and synchronization
mechanism required for concurrent read and write access to shared data might restrict their scal-
ability. A GPU-based parallel algorithm is proposed recently in [24] which achieves a speedup of
only 32 with 2,880 streaming processors.

There exist several algorithms based on the MapReduce framework. Suri et al. presented two
algorithms for counting the exact number of triangles [49]. The first algorithm generates huge
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volumes of intermediate data and requires a significantly large amount of time and memory. The
second algorithm suffers from redundant counting of triangles. Two papers by Park et al. [36, 38]
achieved some improvement over the second algorithm of Suri et al., although the redundancy
is not entirely eliminated. Another MapReduce based parallelization of a wedge-based sampling
technique is proposed in [27], which is also an approximation algorithm.

MapReduce framework provides several advantages such as fault tolerance, abstraction of par-
allel computing mechanisms, and ease of developing a quick prototype or program. However, the
overhead for doing so results in a larger runtime. On the other hand, MPI-based systems pro-
vide the advantages of defining and controlling parallelism from a granular level, implementing
application specific optimizations, such as load balancing, memory, and message optimization.

In this article, we present fast algorithms for counting the exact number of triangles. Our algo-
rithms store a small portion of input graph in the main memory of each processor and can work
on big graphs. Below are the summaries of our contributions.

(i) A fast parallel algorithm: We propose an MPI based parallel algorithm that employs an over-
lapping partitioning scheme and a novel load balancing scheme. The overlapping partitions
eliminate the need for message exchanges leading to a fast algorithm. The algorithm scales
almost linearly with the number of processors, and is able to process a graph with 1 billion
nodes and 10 billion edges in 16 minutes.

(ii) A space-efficient parallel algorithm: We present a space-efficient MPI based parallel algo-
rithm that divides the graph into non-overlapping partitions and achieves a significant space
efficiency over the first algorithm. This algorithm requires inter-processor communications
to count a certain type of triangles. However, we present a novel approach that reduces
communication cost drastically without requiring additional space, which leads to both a
space- and runtime-efficient algorithm. Our adaptation of a parallel partitioning scheme by
computing a novel cost function offers additional runtime efficiency to the algorithm.

(iii) Sequential algorithm and node ordering: We show, both theoretically and experimentally,
a simple modification of a state-of-the-art sequential algorithm for counting triangles im-
proves its performance and use this modified algorithm in the development of our parallel
algorithm. We also present a proof of the optimal node ordering that minimizes the com-
putational cost of this sequential algorithm.

(iv) Parallel computation of clustering coefficients: In a sequential setting, an algorithm for count-
ing triangles can be directly used for computing CCs of the nodes by simply keeping the
counts of triangles for each node individually. However, in a distributed-memory parallel
system, combining the counts from all processors for all nodes poses another level of dif-
ficulty. We show how our algorithm for triangle counting can be used to compute CCs in
parallel.

(v) Parallel approximation using sparsification technique: Although we present algorithms for
counting the exact number of triangles in massive graphs, our algorithm can be used for
approximate counting in conjunction with an edge sparsification technique [52]. We show
how this technique can be adapted to our parallel algorithms and that our parallel sparsifi-
cation improves the accuracy of the approximation over the sequential sparsification [52].

Organization. The rest of the article is organized as follows. The preliminary concepts, notations,
and datasets are briefly described in Section 2. We discuss sequential algorithms for counting tri-
angles and present a proof for the optimal node ordering in Sections 3 and 4, respectively. Our
parallel algorithms for counting triangles are presented in Sections 5 and 6. The parallelization
of the sparsification technique is given in Section 7. We show in Section 8 how we can list all

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 5. Publication date: December 2019.



5:4 S. Arifuzzaman et al.

Table 1. Dataset Used in Our Experiments

Network Nodes Edges Source
Email-Enron 37K 0.36M SNAP [31]
web-Google 0.88M 5.1M SNAP [31]
web-BerkStan 0.69M 6.5M SNAP [31]
Miami 2.1M 50M [13]
LiveJournal 4.8M 43M SNAP [31]
Orkut 3.07M 117.2M SNAP [31]
Twitter 42M 2.4B [28]
Friendster 65.6M 1.8B SNAP [31]
Gnp(n,d) n 1

2nd Erdős–Réyni [16]
PA(n,d) n 1

2nd Pref. Attachment [12]

K, M, and B denote thousands, millions, and billions, respectively.

triangles in graphs in parallel. Section 9 presents a parallel algorithm for computing CCs of nodes.
We discuss some applications of counting triangles in Section 10, present a comparative discussion
of some other recent work in Section 11 and conclude in Section 12.

2 PRELIMINARIES

The given graph is denoted by G (V ,E), where V and E are the sets of nodes (vertices) and edges,
respectively, with m = |E | edges and n = |V | nodes labeled as 0, 1, 2, . . . ,n − 1. We assume the
graphG (V ,E) is undirected. If (u,v ) ∈ E, we say u andv are neighbors of each other. The set of all
neighbors of v ∈ V is denoted by Nv , i.e., Nv = {u ∈ V |(u,v ) ∈ E}. The degree of v is dv = |Nv |.

A triangle in G is a set of three nodes u,v,w ∈ V such that there is an edge between each
pair of these three nodes, i.e., (u,v ), (v,w ), (w,u) ∈ E. The number of triangles containing node
v (in other words, triangles incident on v) is denoted by Tv . Notice that the number of tri-
angles containing node v is the same as the number of edges among the neighbors of v , i.e.,
Tv = | {(u,w ) ∈ E : u,w ∈ Nv } |.

The CC of a node v ∈ V , denoted by Cv is the ratio of the number of edges between neighbors
of v to the number of all possible edges between neighbors of v . Then, we have

Cv =
Tv

( dv

2 )
=

2Tv

dv (dv − 1)
.

Let p be the number of processors used in the computation, which we denote by P0, P1, . . . , Pp−1,
where each subscript refers to the rank of a processor.

Datasets. We use both real world and artificially generated networks for our experiments. A
summary of all the networks is provided in Table 1. Miami [13] is a synthetic, but realistic, so-
cial contact network for Miami city. Twitter, LiveJournal, Orkut, Friendster, Email-Enron, web-
BerkStan, and web-Google are real-world networks. Artificial network PA(n,d) is generated using
the preferential attachment (PA) model [12] with n nodes and average degree d . Network Gnp(n,d)
is generated using the Erdős–Réyni random graph model [16], also known asG (n,q) model, with n
nodes and edge probability q = d

n−1 so that the expected degree of each node is d . Both real-world
and PA(n,d) networks have very skewed degree distributions. Networks having such distributions
create difficulty in partitioning and balancing loads and thus give us a chance to measure the
performance of our algorithms in some of the worst case scenarios.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 5. Publication date: December 2019.



Fast Parallel Algorithms for Counting and Listing Triangles in Big Graphs 5:5

Fig. 1. Algorithm NodeIterator++, where ≺ is the degree based ordering of the nodes defined in Equation (1).

Computation model. We develop parallel algorithms for message passing interface (MPI) based
distributed-memory parallel systems, where each processor has its own local memory. The pro-
cessors do not have any shared memory, one processor cannot directly access the local memory
of another processor, and the processors communicate via exchanging messages using MPI.

Experimental setup. We perform our experiments using a high performance computing cluster
with 64 computing nodes (QDR InfiniBand interconnect), 16 processors (Sandy Bridge E5-2670,
2.6 GHz) per node, memory 64 GB per computing node, and operating system CentOS Linux 6.

3 SEQUENTIAL ALGORITHMS

In this section, we discuss sequential algorithms for counting triangles and show that a simple
modification to a state-of-the-art algorithm improves both runtime and space requirement. Al-
though the modification seems quite simple, and others might have used it previously, to the best
of our knowledge, our analysis is the first to show that such modification improves the perfor-
mance significantly. Our parallel algorithms are based on this improved algorithm.

A simple but efficient algorithm [44, 49] for counting triangles is as follows: for each nodev ∈ V ,
find the number of edges among its neighbors, i.e., the number of pairs of neighbors that complete
a triangle with vertexv . In this method, each triangle (u,v,w ) is counted six times. Many existing
algorithms [18, 30, 44, 45, 49] provide significant improvement over the above method. A very
comprehensive survey of the sequential algorithms can be found in [30, 44]. One of the state of
the art algorithms, known as NodeIterator++, as identified in two recent papers [18, 49], is shown
in Figure 1. Both [18] and [49] use this algorithm as a basis of their external-memory and parallel
algorithm, respectively.

The algorithm NodeIterator++ uses a total ordering ≺ of the nodes to avoid duplicate counts
of the same triangle. Any arbitrary ordering of the nodes, e.g., ordering the nodes based on their
IDs, makes sure each triangle is counted exactly once—counts only one among the six possible
permutations. However, NodeIterator++ incorporates an interesting node ordering based on the
degrees of the nodes, with ties broken by node IDs, defined as follows:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v ). (1)

Definition 3.1 (effective degree). While Nv is the set of all neighbors of v ∈ V , let Nv = {u ∈
V |(u,v ) ∈ E ∧v ≺ u}, i.e., Nv is the set of neighbors u of v such that v ≺ u. We define d̂v = |Nv |
as the effective degree of v .

The degree based ordering can improve the running time. Assuming Nv , for all v , are sorted

and a binary search is used to check (u,w ) ∈ E, a runtime of O
(∑

v (d̂vdv + d̂
2
v logdmax)

)
can be

shown, wheredmax = maxv dv . This runtime is minimized when d̂v values of the nodes are as close
to each other as possible, although, for any ordering of the nodes,

∑
v d̂v =m is invariant. Notice

that in the degree-based ordering, variance of the d̂v values are reduced significantly. We also
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Fig. 2. Algorithm NodeIteratorN, a modification of NodeIterator++.

observe that for the same reason, degree-based ordering of the nodes helps keep the loads among
the processors balanced, to some extent, in a parallel algorithm as discussed in detail in Section 5.

A simple modification of NodeIterator++ is as follows: perform comparisonu ≺ v for each edge
(u,v ) ∈ E in a preprocessing step rather than doing it while counting the triangles. This prepro-
cessing step reduces the total number of ≺ comparisons toO (m) from

∑
v d̂vdv and allows us to use

an efficient set intersection operation. For each edge (v,u), u is stored in Nv if and only if v ≺ u.
The modified algorithm NodeIteratorN is presented in Figure 2. All triangles containing node v
and any u ∈ Nv can be found by set intersection Nu ∩ Nv (Line 10 in Figure 2). The correctness of
NodeIteratorN is proven in Theorem 3.2.

Theorem 3.2. Algorithm NodeIteratorN counts each triangle in G once and only once.

Proof. Consider a triangle (x1,x2,x3) inG, and without the loss of generality, assume that x1 ≺
x2 ≺ x3. By the construction of Nx in the preprocessing step, we have x2,x3 ∈ Nx1 and x3 ∈ Nx2 .
When the loops in Line 8–9 begin with v = x1 and u = x2, node x3 appears in S (Line 10–11), and
the triangle (x1,x2,x3) is counted once. But this triangle cannot be counted for any other values
of v and u because x1 � Nx2 and x1,x2 � Nx3 . �

In NodeIteratorN, when Nv and Nu are sorted, Nu ∩ Nv can be computed in O (d̂u + d̂v ) time.

Then, we have O
(∑

v ∈V dvd̂v

)
time complexity for NodeIteratorN as shown in Theorem 3.3, in

contrast to O
(∑

v (d̂vdv + d̂
2
v logdmax)

)
for NodeIterator++.

Theorem 3.3. The time complexity of algorithm NodeIteratorN is O
(∑

v ∈V dvd̂v

)
.

Proof. Time for the construction of Nv for all v isO (
∑

v dv ) = O (m), and sorting these Nv re-

quires O
(∑

v d̂v log d̂v

)
time. Now, computing intersection Nv ∩ Nu takes O (d̂u + d̂v ) time. Thus,

the time complexity of NodeIteratorN is

O (m) +O �
�
∑
v ∈V

d̂v log d̂v
�
�
+O ��

�

∑
v ∈V

∑
u ∈Nv

(d̂u + d̂v )��
�

= O �
�
∑
v ∈V

d̂v log d̂v
�
�
+O ��

�

∑
(v,u )∈E

(d̂u + d̂v )��
�

= O �
�
∑
v ∈V

d̂v log d̂v
�
�
+O �

�
∑
v ∈V

dvd̂v
�
�
= O �

�
∑
v ∈V

dvd̂v
�
�
.
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Table 2. Running Time for Sequential Algorithms

Networks
Runtime (sec.)

Triangles
NodeIterator++ NodeIteratorN

Email-Enron 0.14 0.07 0.7M
web-BerkStan 3.5 1.4 64.7M
LiveJournal 106 42 285.7M
Miami 46.35 32.3 332M
PA(25M, 50) 690 360 1.3M

The second last step follows from the fact that for each v ∈ V , term d̂v appears dv times in this
expression. �

Notice that the set intersection operation can also be used with NodeIterator++ by replacing
Line 4–6 of NodeIterator++ in Figure 1 with the following three lines as shown in [18] (Page 674):

However, with this set intersection operation, the runtime of NodeIterator++ isO
(∑

v d2
v

)
since

|Nv | = dv , and computing Nv ∩ Nu takes O (du + dv ) time. Further, the memory requirement for
NodeIteratorN is half of that for NodeIterator++. NodeIteratorN stores

∑
v d̂v =m elements in

all Nv and NodeIterator++ stores
∑

v dv = 2m elements. Here, we would like to note that the two
algorithms presented in [30, 45] take the same asymptotic time complexity as NodeIteratorN. How-
ever, the algorithm in [45] requires three times more memory than NodeIteratorN. The algorithm
in [30] requires more than twice the memory as NodeIteratorN, maintains a list of indices for all
nodes, and the hidden constant in the runtime can be much larger. Our experimental results show
that NodeIteratorN is significantly faster than NodeIterator++ for both real-world and artificial
networks as presented in Table 2.

4 AN OPTIMAL NODE ORDERING

A total ordering ≺ of the nodes helps avoid duplicate counts of the same triangle. Any ordering of
the nodes, e.g., ordering based on node IDs, random ordering,k-coreness based ordering, make sure
each triangle is counted exactly once. By avoiding duplicate counts, these orderings also improve
running time of the algorithm. However, different orderings lead to different runtimes. Figure 3
shows the runtime of our sequential algorithm for triangle counting with four orderings of nodes:
ordering based on node IDs, degree, k-coreness, and random ordering. Node IDs and degrees are
readily available with network data and do not require any additional computation. On the other
hand, k-coreness based ordering requires computing coreness of nodes, and for random ordering,
we generate n random numbers. Figure 3(a) shows the comparison of runtime of counting tri-
angles without considering the cost for computing orderings. Figure 3(b) shows the comparison
with total runtime of counting triangles and computing orderings. In both cases, degree based
ordering provides the best runtime efficiency among all orderings. For networks with relatively
even degree distribution such as Miami, all the orderings provide similar runtimes. However, for
networks with skewed degree distribution, degree based ordering provides the least runtime. In
our datasets, nodes with large degrees somehow appear at the beginning (having smaller IDs)
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Fig. 3. Comparison of runtime of sequential triangle counting (NodeIteratorN) with four distinct orderings

of nodes. For each network, we compute the percentage of runtime with respect to the maximum runtime

given by any of these orderings. In all cases, the degree based ordering gives the least runtime. Note that we

compute the average runtime from 25 independent runs for the random ordering.

giving ID based ordering almost the opposite effect of degree based ordering. As a result, ID based
ordering provides the largest runtime for our datasets.

Now that our experimental results show degree based ordering provides the best runtime effi-
ciency, next we show in Theorem 4.3 that the degree based ordering is, in fact, the optimal ordering
that minimizes the runtime of algorithm NodeIteratorN.

We denote the degree based ordering as ≺D , which is defined as follows:

u≺Dv ⇐⇒ du < dv or (du = dv and u < v ). (2)

Assume there is another total ordering ≺K based on some quantity kv of nodes v :

u≺Kv ⇐⇒ ku < kv or (ku = kv and u < v ). (3)

We now define a function that quantifies how ordering ≺K agrees with ≺D on the relative order
of x ,y ∈ V .

Definition 4.1 (Agreement function Y). The agreement function Y : V ×V → Z is defined as fol-
lows:

Y (x ,y) =
⎧⎪⎪⎨⎪⎪⎩

−1, if (x ,y) ∈ E and x≺Dy and y ≺K x
1, if (x ,y) ∈ E and y≺Dx and x≺Ky
0, Otherwise

It is, then, easy to see that Y (x ,y) = −Y (y,x ).

We now prove an important result in the following lemma, which we subsequently use in The-
orem 4.3.

Lemma 4.2. For any (x ,y) ∈ E, Y (x ,y) (dx − dy ) ≥ 0.

Proof. Let cxy = Y (x ,y) (dx − dy ). If orderings ≺K and ≺D agree on the relative order of x
and y, then Y (x ,y) = 0 by definition, and hence, cxy = 0. Otherwise, consider the following three
cases.
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—dx = dy : This gives dx − dy = 0, and thus, cxy = 0.
—dx < dy : We have x ≺D y and y ≺K x , and thus, Y (x ,y) = −1. Since dx − dy < 0, cxy > 0.
—dx > dy : We have y ≺D x and x ≺K y, and thus, Y (x ,y) = 1. Since dx − dy > 0, cxy > 0.

Therefore, for any (x ,y) ∈ E, cxy = Y (x ,y) (dx − dy ) ≥ 0. �

Theorem 4.3. Degree based ordering ≺D minimizes the runtime for counting triangles using al-

gorithm NodeIteratorN.

Proof. Let d̂v be the effective degree of vertex v with ordering ≺D . Then, the corresponding

runtime for counting triangles is Θ
(∑

i ∈V did̂i

)
. We provide a proof by contradiction. Assume that

≺D is not an optimal ordering. Then, there exists another ordering≺K that leads to a lower runtime
for counting triangles than that of ≺D . Let ≺K yields an effective degree d̃ , the corresponding

runtime for counting triangles is Θ
(∑

i ∈V did̃i

)
. Let CD =

∑
i ∈V did̂i and CK =

∑
i ∈V did̃i . Then,

we have CK < CD .
Now, using Definition 4.1, the effective degree d̃x of node x obtained by ≺K can be expressed as

d̃x = d̂x +
∑

y∈Nx

Y (x ,y).

Now, we have,

CK =
∑
x ∈V

dx d̃x

=
∑
x ∈V

dx
��
�
d̂x +

∑
y∈Nx

Y (x ,y)��
�

=
∑
x ∈V

dx d̂x +
∑
x ∈V

��
�
dx

∑
y∈Nx

Y (x ,y)��
�

=
∑
x ∈V

dx d̂x +
∑

(x,y )∈E

(
dxY (x ,y) + dyY (y,x )

)

=
∑
x ∈V

dx d̂x +
∑

(x,y )∈E

Y (x ,y)
(
dx − dy

)
.

The second last step follows from rearranging terms of the second summation and distributing
them over edges. The last step follows from the fact that Y (y,x ) = −Y (x ,y). Now, from Lemma 4.2

we have, Y (x ,y) (dx − dy ) ≥ 0 for any (x ,y) ∈ E. Thus,
∑

(x,y )∈E Y (x ,y)
(
dx − dy

)
≥ 0, and there-

fore,

CK ≥
∑
x ∈V

dx d̂x = CD .

This contradicts our assumption of CK < CD . Therefore, degree based ordering ≺D is an opti-
mal ordering that minimizes the runtime for counting triangles of our algorithm. �

We use algorithm NodeIteratorN with degree based ordering in our parallel algorithms.

5 A FAST PARALLEL ALGORITHM WITH OVERLAPPING PARTITIONING

In this section, we present our fast parallel algorithm for counting triangles in massive graphs with
overlapping partitioning and novel load balancing schemes.
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Fig. 4. The main steps of our fast parallel algorithm.

5.1 Overview of the Algorithm

We assume that the graph is massive and does not fit in the local memory of a single computing
node. Only a part of the entire graph is available to a processor. Let p be the number of proces-
sors used in the computation. The graph is partitioned into p partitions, and each processor Pi is
assigned one such partition Gi (Vi ,Ei ) (formally defined below). Pi performs computation on its
partition Gi . The main steps of our fast parallel algorithm are given in Figure 4. In the following
subsections, we describe the details of these steps and several load balancing schemes.

5.2 Partitioning the Graph

The memory restriction poses a difficulty where the graph must be partitioned in such a way that
the memory required to store a partition is minimized and at the same time the partition contains
sufficient information to minimize communications among the processors. For the input graph
G (V ,E), processor Pi works onGi (Vi ,Ei ), which is a subgraph ofG induced byVi . The subgraphGi

is constructed as follows: First, set of nodesV is partitioned intop disjoint subsetsV c
0 ,V

c
1 , . . . ,V

c
p−1,

such that, for any j and k , V c
j ∩V c

k
= ∅ and

⋃
k V

c
k
= V . Second, set Vi is constructed containing

all nodes in V c
i and

⋃
v ∈V c

i
Nv . Edge set Ei ⊂ E is the set of edges {(u,v ) : u ∈ Vi and v ∈ Nu }.

Each processor Pi is responsible for counting triangles incident on the nodes inV c
i . We call any

nodev ∈ V c
i a core node of partition i . Eachv ∈ V is a core node in exactly one partition. How the

nodes in V are distributed among the core sets V c
i for all Pi affect the load balancing and hence

performance of the algorithm crucially. Later in Section 5.4, we present several load balancing
schemes and the details of how sets V c

i are constructed.
Now, Pi stores the set of neighbors Nv of allv ∈ Vi . Notice that for a nodew ∈ (Vi −V c

i ), neigh-
bor set Nw may contain some nodes x � Vi . Such nodes x can be safely removed from Nw and the
number of triangles incident on all v ∈ V c

i can still be computed correctly. But, the presence of
these nodes in Nw does not affect the correctness of the algorithm either. However, as our experi-
mental results in Figure 5 show, we can save about 50% of memory space by not storing such nodes
x � Vi in Nw . Figure 5 also demonstrates that as more processors are used, memory requirement
per processor decreases.

5.3 Counting Triangles

Once each processor Pi has its partition Gi (Vi ,Ei ), it uses the improved sequential algorithm
NodeIteratorN presented in Section 3 to count triangles in Gi for each core node v ∈ V c

i . Neigh-
bor sets Nw for the nodes w ∈ Vi −V c

i only help in finding the edges among the neighbors of
the core nodes. To be able to use an efficient intersection operation, Nv for all v ∈ Vi are sorted.
The code executed by Pi is given in Figure 6. Once all processors complete their counting steps,
the counts from all processors are aggregated into a single count by an MPI reduce function,
which takes O (logp) time. Ordering of the nodes, construction of Nv , and disjoint node parti-
tionsV c

i make sure that each triangle in the network appears exactly in one partitionGi . Thus, the
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Fig. 5. Memory usage with

optimized and non-optimized

data storing.

Fig. 6. Algorithm executed by

processor Pi to count triangles in

Gi (Vi ,Ei ).

Fig. 7. A network with

a skewed degree dis-

tribution: dv0 = n − 1,

dvi�0 = 3.

correctness of the sequential algorithm NodeIteratorN shown in Section 3 ensures that each triangle
is counted exactly once.

5.4 Load Balancing

To reduce the runtime of a parallel algorithm, it is desirable that no processor remains idle and
all processors complete their executions almost at the same time. In Section 3, we discussed how
degree based ordering of the nodes can reduce the runtime of the sequential algorithm, and hence
it reduces the runtime of the local computation in each processor Pi . We observe that, interestingly,
this ordering also provides load balancing to some extent, both in terms of runtime and space, at
no additional cost. Consider the example network shown in Figure 7. With an arbitrary ordering
of the nodes, |Nv0 | can be as much as n − 1, and a single processor that contains v0 as a core node
is responsible for counting all triangles incident onv0. Then, the runtime of the parallel algorithm
can essentially be same as that of a sequential algorithm. With the degree-based ordering, we
have |Nv0 | = 0 and |Nvi

| ≤ 3 for all i . Now if the core nodes are equally distributed among the
processors, both space and computation time are almost balanced.

Although degree-based ordering helps mitigate the effect of skewness in degree distribution
and balance load to some extent, working with more complex networks and highly skewed de-
gree distribution reveals that distributing core nodes equally among the processors does not make
the load well-balanced in many cases. Figure 8 shows speedup of the parallel algorithm with an
equal number of core nodes assigned to each processor. LiveJournal network shows poor speedup,
whereas the Miami network shows a relatively better speedup. This poor speedup for LiveJournal
network is a consequence of highly imbalanced computation load across the processors as shown
in Figure 9. Unlike Miami network, LiveJournal network has a very skewed degree distribution.
(Note that we used 100 processors for our experiments on load distribution. Although we could use
a higher number of processors, using fewer processors helped demonstrate the pattern of imbal-
ance of loads more clearly. In our subsequent experiments on scalability, we use a higher number
of processors. In fact, we show that our algorithm scales to a larger number of processors when
networks grow larger.)

In the next section, we present several load balancing schemes that improve the performance
of our algorithm significantly.

Proposed load balancing schemes. The balanced loads are determined before counting triangles.
Thus, our parallel algorithm works in two phases:

(1) Computing balanced load: This phase computes partitionsV c
i so that the computational loads

are well-balanced.
(2) Counting triangles: This phase counts the triangles following the algorithms in Figures 4

and 6.
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Fig. 8. Speedup with equal

number of core nodes in all pro-

cessors on two networks–Miami

and LiveJournal.

Fig. 9. Runtime of individual

processors for equal number of

core nodes on Miami and Live-

Journal networks.

Fig. 10. Load balancing cost

for LiveJournal network with

different schemes.

Table 3. Cost Functions f (.) for Load Balancing Schemes

Node Function Identifying Notation
f (v ) = 1 N
f (v ) = dv D

f (v ) = d̂v DH

f (v ) = dvd̂v DDH

f (v ) = d̂v
2

DH2

f (v ) =
∑

u ∈Nv
(d̂v + d̂u ) DPD

Computational cost for phase 1 is referred to as load-balancing cost, for phase 2 as counting cost,
and the total cost for these two phases as total computational cost. In order to be able to distribute
load evenly among the processors, we need an estimation of computation load for computing
triangles. For this purpose, we define a cost function f : V → R, such that f (v ) is the computational
cost for counting triangle incident on node v (Lines 4–7 in Figure 6). Then, the total cost incurred
to Pi is given by

∑
v ∈V c

i
f (v ). To achieve a good load balancing,

∑
v ∈V c

i
f (v ) should be almost equal

for all i . Thus, the computation of balanced load consists of the following two steps:

(1) Computing f : Compute f (v ) for each v ∈ V
(2) Computing partitions: Determine p disjoint partitions V c

i such that

∑
v ∈V c

i

f (v ) ≈ 1

p

∑
v ∈V

f (v ). (4)

The above computation must also be done in parallel. Otherwise, this computation takes at least
Ω(n) time, which can wipe out the benefit gained from balancing load or even have a negative effect
on the performance. Parallelizing the above computation, especially Step 2 (computing partitions),
is a non-trivial problem. Next, we describe parallel algorithm to perform the above computation.

Computing f : It might not be possible to exactly compute the value of f (v ) before the actual
execution of counting triangles takes place. Fortunately, Theorem 3.3 provides a mathematical
formulation of counting cost in terms of the number of vertices, edges, original degree d , and
effective degree d̂ . Guided by Theorem 2, we have come up with several approximate cost function
f (v ), which are listed in Table 3. Each function corresponds to one load balancing scheme. The
rightmost column of the table shows identifying notations of the individual schemes.
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The input graph is given as a sequence of adjacency lists: adjacency list of the first node followed
by that of the second node, and so on. The input sequence is considered divided by size (number
of bytes) into p chunks. However, it is made sure that adjacency list of a particular node reside in
only one processor. Initially, processor Pi stores the ith chunk in its memory. Let Ci be the set of
all nodes in the ith chunk. Next, Pi computes f (v ) for all nodes v ∈ Ci as follows.

—Scheme N: Function f (v ) = 1 requires no computation. This scheme, essentially, assigns
an equal number of core nodes to each processor.

—Scheme D: Function f (v ) = dv requires no computation. This scheme, essentially, assigns
an equal number of edges to each processor.

—Scheme DH: Computing function f (v ) = d̂v requires degrees of all u ∈ Nv . Let u ∈ Cj .
Then, Pi sends a request message to Pj , and Pj replies with a message containing du .

—Scheme DDH: For f (v ) = dvd̂v , d̂v is computed as above.

—Scheme DH2: For f (v ) = d̂v
2
, d̂v is computed as above.

—Scheme DPD: Function f (v ) =
∑

u ∈Nv
(d̂v + d̂u ) is computed as follows.

(i) Each Pi computes d̂v , v ∈ Ci , as discussed above.
(ii) Then Pi finds d̂u for all u ∈ Nv : Let u ∈ Cj . Pi sends a request message to Pj , and Pj

replies with a message containing d̂u .
(iii) Now, f (v ) =

∑
u ∈Nv

(d̂v + d̂u ) is computed using d̂v and d̂u obtained in (i ) and (ii ).

Computing partitions: Given that each processor Pi knows f (v ) for all v ∈ Ci , our goal is to
partition V into p disjoint subsets V c

i such that
∑

v ∈V c

i
f (v ) ≈ 1

p

∑
v ∈V f (v ).

We first compute cumulative sum F (t ) =
∑t

v=0 f (v ) in parallel by using a parallel prefix sum
algorithm [6]. Processor Pi computes and stores F (t ) for nodes t ∈ Ci . This computation takes

O
(

n
p
+ logp

)
time. Notice that Pp−1 computes F (n − 1) =

∑n−1
v=0 f (v ), cost for counting all trian-

gles in the graph. Pp−1 then computes α = 1
P

∑
v ∈V f (v ) = 1

p
F (n − 1) and broadcast α to all other

processors. Now, let V c
i = {xi ,xi + 1 . . . ,x (i+1) − 1} for some node xi ∈ V . We call xi the start or

boundary node of partition i . Node x j is the jth boundary node if and only if F (x j − 1) < jα ≤ F (x j )
or equivalently, x j = arдminv ∈V (F (v ) ≥ jα ). A chunk Ci may contain 0, 1, or multiple boundary
nodes in it. Each Pi finds the boundary nodes x j in its chunk: we use the algorithm presented in [4]
to compute boundary nodes of partitions, which takes O (n/p + p) time in the worst case. At the
end of this execution, each processor Pi knows boundary nodes xi and x (i+1) . Now Pi can construct
V c

i and compute its partition Gi (Vi ,Ei ) as described in Section 5.2.
Since scheme DPD requires two levels of communication for computing f (.), it has the largest

load balancing cost among all schemes. Computing f (.) for DPD requires O ( m
p
+ p logp) time.

Computing partitions has a runtime complexity ofO ( m
p
+ p). Therefore, the load balancing cost of

DPD is given byO ( m
p
+ p logp). Figure 10 shows an experimental result of the load balancing cost

for different schemes on the LiveJournal network. Scheme N has the lowest cost and DPD the
highest. Schemes DH, DH2, and DDH have a quite similar load balancing cost. However, since
scheme DPD gives the best estimation of the counting cost, it provides better load balancing.
Figure 11 demonstrates total computation cost (load) incurred in individual processors with dif-
ferent schemes on Miami, LiveJournal, and Twitter networks. Miami is a network with an almost
even degree distribution. Thus, all load balancing schemes, even simpler schemes like N and D,
distribute loads almost equally among processors. However, LiveJournal and Twitter have a very
skewed degree distribution. As a result, partitioning the network based on number of nodes (N)
or degree (D) do not provide good load balancing. The other schemes capture the computational
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Fig. 11. Load distribution among processors for LiveJournal, Miami, and Twitter networks by different

schemes.

load more precisely and produce a very even load distribution among processors. In fact, for such
networks, scheme DPD provides the best load balancing.

Although there exist several standard graph partitioning algorithms in literature [39, 58] such as
Metis, Parmetis, Zoltan, and Patoh, those might not work well for our problem. Those algorithms
strive to minimize cut edges, which help reduce communication overhead, however, we also re-
quire the computation cost to be well-balanced among nodes. Sequential partitioning algorithms
(Metis and Patoh) are not useful for partitioning massive networks. Additionally, we require to es-
timate weights of nodes (based on triangle counting cost) in parallel in the partitioning procedure,
which is not readily available in parallel schemes Zoltan and Parmetis. Hence, we design the above
parallel partitioning scheme that considers the actual triangle counting cost incurred at nodes and
thus helps in balancing computation loads.

5.5 Performance Analysis

In this section, we present the experimental results evaluating the performance of our algorithm
and the load balancing schemes.

5.5.1 Strong Scaling. Strong scaling of a parallel algorithm shows how much speedup a paral-
lel algorithm gains as the number of processors increases. Figure 12 shows strong scaling of our
algorithm on LiveJournal, Miami, Twitter, and Friendster networks with different load balancing
schemes. The speedup factors of these schemes are almost equal on Miami network. Schemes N
and D have a little better speedup than the others. On the contrary, for LiveJournal, Twitter, and
Friendster networks, speedup factors for different load balancing schemes vary quite significantly.
Scheme DPD achieves better speedup than other schemes. As discussed before, for Miami net-
work, all load balancing schemes distribute loads equally among processors. This produces an
almost same speedup on Miami network with all schemes. A lower load balancing cost of schemes
N and D (Figure 10) yields a little higher speedup. However, real-world graphs such as LiveJournal
and Twitter networks, scheme DPD gives the best load distribution (Figure 11) and thus provides
the best speedups. Although DPD has a higher load balancing cost than others, the benefit gained
from DPD as an even load distribution outweighs this cost. Thus, we recommend for using DPD
on real-world big graphs. Our subsequent results will be based on scheme DPD.

5.5.2 Weak Scaling. Weak scaling of a parallel algorithm shows the ability of the algorithm
to maintain constant computation time when the problem size grows proportionally with the in-
creasing number of processors. We use PA(n,m) networks for this experiment, and for x proces-
sors, we use network PA(x/10 × 1M, 50). The weak scaling of our algorithm is shown in Figure 13.
Triangle counting cost remains almost constant (blue line). Since the load-balancing step has a
communication overhead of O (p logp), load-balancing cost increases gradually with the increase
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Fig. 12. Speedup gained from different load balancing schemes for LiveJournal, Miami, Twitter, and Friend-

ster networks.

Table 4. Runtime Performance of Our Fast Parallel Algorithm Using

200 Processors and the Algorithm in [49]

Networks
Runtime

Triangles
Our algorithm [49]

Twitter 9.4 m 423 m 34.8B
web-BerkStan 0.10s 1.70 m 65M
LiveJournal 0.8 s 5.33 m 286M
Miami 0.6 s – 332M
PA(1B, 20) 15.5 m – 0.403M

of processors. It causes the total computation time to grow slowly with the addition of processors
(red line). Since the growth is very slow and the runtime remains almost constant, the weak scaling
of our algorithm is very good.

5.5.3 Comparison with Previous Algorithms. The runtime of our algorithm on several real and
artificial networks are shown in Table 4. We also compare our algorithm with another distributed-
memory parallel algorithm for counting triangles given in [49]. We select three of the five networks
used in [49]. Twitter and LiveJournal are the two largest among the networks used in [49]. We also
use web-BerkStan, which has a very skewed degree distribution. No artificial network is used in
[49]. For all of these three networks, our algorithm has significantly smaller runtime than that of
[49], even though the later uses a larger number of processors (1, 636 processors). The improvement
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Fig. 13. Weak scaling on PA(p/10 × 1M, 50)

networks.

Fig. 14. Improved scalability with increased

network size.

over [49] is due to the fact that their algorithm generates a huge volume of intermediate data,
which are all possible two-paths centered at each node. The amount of such intermediate data
can be significantly larger than the original network. For example, for the Twitter network, 300B
two-paths are generated while there are only 2.4B edges in the network. The algorithm in [49]
shuffles and regroups these two-paths, which take significantly larger time and also memory.

5.5.4 Scaling with Network Size. The load-balancing cost of our algorithm, as shown in Sec-
tion 5.4, is O (m/p + p logp), where p is the number of processors used in the computation. For
the algorithm given in Figure 6, the counting cost is O (

∑
v ∈V c

i

∑
u ∈Nv

(d̂u + d̂v )). Thus, the total
computational cost of our algorithm is

F (p) = O ��
�
m

p
+ p logp +max

i

∑
v ∈V c

i

∑
u ∈Nv

(d̂u + d̂v )��
�

≈ c1
m

p
+ c2p logp + c3 max

i

∑
v ∈V c

i

∑
u ∈Nv

(d̂u + d̂v ),

where c1, c2, and c3 are constants.
Now, quantity denoting computation cost, (c1m/p + c3

∑
v ∈V c

i

∑
u ∈Nv

(d̂u + d̂v )), decreases with
the increase of p, but communication cost p logp increases with p. Thus, initially when p increases,
the overall runtime decreases (hence the speedup increases). But, for some large value ofp, the term
p logp becomes dominating, and the overall runtime increases with the addition of further pro-
cessors. Notice that communication cost p logp is independent of network size. Therefore, when
networks grow larger, computation cost increases, and hence they scale to a higher number of
processors, as shown in Figure 14. This is, in fact, a highly desirable behavior of our parallel al-
gorithm, which is designed for real-world massive networks. We need large number of processors
when the network size is large and computation time is high.

Consequently, there is an optimal value of p, popt , for which the total time F (p) drops to its
minimum and the speedup reaches its maximum. To have an estimation of popt , we replace d

and d̂ with average degree d̄ and d̄/2, respectively, and have F (p) ≈ c1nd̄/p + c2p logp + c3nd̄
2/p.

At the minimum point, d
dp

(
F (p)

)
= 0, which gives the following relationship of popt , n and d̄ :

p2 (1 + logp) = n
c2

(c3d̄
2 + c1d̄ ). Thus, popt has roughly a linear relationship with

√
n and d̄ .

Assume that a network with the number of nodes n′ and average degree d̄ ′ experimentally
shows an optimal p of p ′opt . Then, another network with n nodes and an average degree d̄ has an
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Table 5. Memory Usage of Our Algorithms (Size of the Largest Partition)

with Both Overlapping and Non-overlapping Partitioning

Networks
Memory (MB)

Ratio d̄ dmaxNon-overlap. Overlap.
web-Google 1.49 11.3 7.85 11.6 6332
LiveJournal 9.41 110.75 11.75 18 20333
Miami 10.63 109.58 10.32 47.6 425
Twitter 265.82 4254.18 16.004 57.1 1001159
PA(10M, 100) 121.11 2120.94 17.5 100 25068
PA(1M, 1000) 138.20 3427.36 24.8 1000 19255

Number of partitions used is 100.

approximate optimum number of processors:

popt ≈ p ′opt

d̄

d̄ ′

√
n

n′
. (5)

Thus, if we compute p ′opt experimentally by trial and error for an available network (let’s call it
the base network), we can estimate popt for all other networks. The base network might be a small
network for which this trial-error should be fairly fast. From the result presented in Figure 14, the
network PA(1M, 50) can serve as a base network, and popt for the network PA(25M, 50) can be
estimated as popt ≈ 600, which is approximately five times of that of PA(1M, 50) (p ′opt ≈ 120). The
relationship is also justified when we vary average degree of the networks.

6 A SPACE-EFFICIENT PARALLEL ALGORITHM WITH NON-OVERLAPPING

PARTITIONING

The algorithm presented in Section 5 divides the input graph into a set of p overlapping partitions,
where some edges (u,v ) might be repeated (overlapped) in multiple partitions. Such overlapping
allows the algorithm to count triangles without any communication among processors leading to
faster computation. Further, since each processor works on a part of the entire graph, the algorithm
can work on large graphs. However, for instances where the graph has a high average degree or
a few nodes with high degrees, overlapping partitions can be large. Now, if overlapping of edges
among partitions are avoided, we can further improve the space efficiency of the algorithm. In
this section, we present a parallel algorithm that divides the input graph into non-overlapping
partitions. Each edge resides in a single partition, and the sizes of all partitions sum up to the
size of the graph. Non-overlapping partitioning leads to a more space efficient algorithm and thus
allows to work on larger graphs. In fact, non-overlapping partitioning offers as much as d̄ (average
degree of the graph) times space saving over the overlapping partitions. Table 5 shows the space
requirement of non-overlapping partitions, which is up to 25 times smaller than that overlapping
partitions for the networks we experimented on.

Notice the space requirement of the other distributed-memory parallel algorithms for count-
ing the exact number of triangles in literature: the first MapReduce based algorithm proposed in
[49] generates a huge amount of intermediate data, which is significantly larger than the origi-
nal network (e.g., 125 times larger for Twitter network). The second MapReduce based algorithm
proposed in [49], the partition-based algorithm, has a space requirement of O (mp) for the Map
phase (with p partitions), which is p times larger than the network size. The algorithm in [36] also
requires O (mp) memory space. Our space-efficient algorithm requires only a total of O (m) space
for storing all p partitions.
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6.1 Overview of Our Space-Efficient Parallel Algorithm

This algorithm partitions the input graphG (V ,E) into a set of p partitions constructed as follows:
set of nodes V is partitioned into p disjoint subsets V c

i , such that, for 0 ≤ j,k ≤ p − 1 and j � k ,
V c

j ∩V c
k
= ∅ and

⋃
k V

c
k
= V . Edge set Ec

i , constructed as Ec
i = {(u,v ) : u ∈ V c

i ,v ∈ Nu }, constitutes
the ith partition. Note that this partition is non-overlapping—each edge (u,v ) ∈ E resides in one
and only one partition. For 0 ≤ j,k ≤ p − 1 and j � k , Ec

j ∩ Ec
k
= ∅ and

⋃
k E

c
k
= E. The sum of

space required to store all partitions equals to the space required to store the whole graph.
Now, to count triangles incident on v ∈ V c

i , processor Pi needs Nu for all u ∈ Nv (Lines 7–
10, Figure 2). If u ∈ V c

i , information of both Nv and Nu is available in the ith partition, and Pi

counts triangles incident on (v,u) by computing Nu ∩ Nv . However, if u ∈ V c
j , j � i , Nu resides

in partition j. Processor Pi and Pj exchange message(s) to count triangles incident on such (v,u).
This exchanging of messages introduces a communication overhead, which is a crucial factor on
the performance of the algorithm. We devise an efficient approach to reduce the communication
overhead drastically and improve the performance significantly. Once all processors complete the
computation associated with respective partitions, the counts from all processors are aggregated.

6.2 An Efficient Communication Approach

Processor Pi and Pj require to exchange messages for counting triangles incident on (v,u) where
v ∈ V c

i and u ∈ Nv ∩V c
j . A simple way to count such triangles is as follows: Pi requests Pj for Nu .

Pj sends Nu to Pi , and Pi counts triangles incident on the edge (v,u) by computing Nv ∩ Nu . For
further reference, we call this approach as direct approach. This approach requires exchanging as
much as O (md̄ ) messages (d̄ is the average degree of the network), which is substantially larger
than the size of the graph.

The above approach has a high communication overhead due to exchanging a large num-
ber of redundant messages leading to a large runtime. Assume u ∈ Nv1 ∩ Nv2 ∩ · · · ∩ Nvk

, for
v1,v2, . . . ,vk ∈ V c

i . Then, Pi sends k separate requests for Nu to Pj while computing triangles
incident on v1, v1, . . . , vk . In response to those requests, Pj sends Nu to Pi k times.

One seemingly obvious way to eliminate redundant messages is that instead of requesting Nu

multiple times, Pi stores it in memory for subsequent use. However, space requirement for storing
all Nu along with the partition i itself is the same as that of storing an overlapping partition. This
diminishes our original goal of a space-efficient algorithm.

Another way of eliminating message redundancy is as follows. WhenNu is fetched, Pi completes
all computation that requires Nu : Pi finds all k nodes v ∈ V c

i such that u ∈ Nv . It then performs
all k computations Nv ∩ Nu involving Nu and discards Nu . Now, since u ∈ Nv ⇒ v � Nu , Pi can-
not extract all such nodes v from the message Nu . Instead, Pi requires to scan through its whole
partition to find such nodes v , where u ∈ Nv . This scanning is very expensive—requiring
O (

∑
v ∈V c

i
dv ) time for each message—which might even be slower than the direct approach with

redundant messages.
All the above techniques to improve the efficiency of Direct approach introduce additional space

or runtime overhead. Below we propose an efficient approach to reduce message exchanges dras-
tically without adding further overhead.

Reduction of messages. To compute Nv ∩ Nu for v ∈ V c
i and u ∈ Nv ∩V c

j , Pi requires fetching
Nu from partition j. Instead, Pj can perform the same computation if Pi sends Nv to Pj . Specifically,
we consider the following approach: Pi sends Nv to Pj instead of fetching Nu . Pj counts triangles
incident on edge (u,v ) by performing the operation Nv ∩ Nu . We call this approach as Surrogate

approach.
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Fig. 15. The procedure executed by Pi after receiving message 〈data,X 〉 from some Pj .

On a surface, this approach might seem to be a simple modification from Direct approach. How-
ever, notice the following implication, which is very significant to the algorithm: once Pj receives
Nv , it can extract the information of all nodes u, such that u is in both Nv andV c

j , by scanning Nv

only. For all such nodes u, Pj counts triangles incident on edge (u,v ) by performing the operation
Nv ∩ Nu . Pj then discards Nv since it is no longer needed. Note that extracting all u such that
u ∈ Nv and u ∈ Vj requires O (dv ) time (compare this to O (

∑
v ∈V c

i
dv ) time of direct approach for

the same purpose). In fact, this extraction can be done while computing triangles Nv ∩ Nu for first
such u. This saves from any additional overhead.

As we noticed, if delegated, Pj can count triangles on multiple edges (u,v ) from a single message
Nv , where v ∈ V c

i and u ∈ Nv ∩V c
j . Thus, Pi does not require to send Nv to Pj multiple times for

each such u. However, to avoid multiple sending, Pi needs to keep track of which processors it
has already sent Nv to. This message tracking needs to be done carefully, otherwise any additional
space or runtime overhead might compromise the efficiency of the overall approach.

It is easy to see that one can perform the above tracking by maintaining p flag variables, one
for each processor. Before sending Nv to a particular processor Pj , Pi checks jth flag to see if it
is already sent. This implementation is conceptually simple but cost for resetting flags for each
v ∈ V c

i sums to a significant cost of O ( |V c
i |.p). Now notice that an overhead of O ( |V c

i |.p) will lead
to a runtime of at least Ω(n) because maxi |V c

i | ≥
n
p

. An algorithm with Ω(n) will not be scalable

to a large number of processors since with the increase of p, the runtime Ω(n) does not decrease.
Now, observe the following simple yet useful property ofNv : SinceV c

j is a set of consecutive nodes,

and all neighbor lists Nv are sorted, all nodes u ∈ Nv ∩V c
j reside in Nv in consecutive positions. This

property enables each Pi to track messages by only recording the last processor (say, LastProc) it
has sent Nv to. When Pi encounters u ∈ Nv such that u ∈ V c

j , it checks LastProc. If LastProc � Pj ,
then Pi sends Nv to Pj and set LastProc = Pj . Otherwise, the nodeu is ignored, meaning it would be
redundant to send Nv . Resetting a single variable LastProc has an overhead of O ( |V c

i |) as opposed
to O ( |V c

i |.p).
Thus, surrogate approach detects and eliminates message redundancy and allows multiple com-

putation from a single message, without even compromising execution or space efficiency. The
efficiency gained from this capability is shown experimentally in Section 6.7.

6.3 Pseudocode for Counting Triangles

We denote a message by 〈t ,X 〉, where t ∈ {data, control } is the type andX is the actual data associ-
ated with the message. For a data message (t = data), X refers to a neighbor list Nx , whereas for a
control (t = control ), X = ∅. The pesudocode for counting triangles for an incoming data message
〈data,X 〉 is given in Figure 15.

Once a processor Pi completes the computation on all v ∈ V c
i , it broadcasts a completion mes-

sage 〈control , ∅〉. However, it cannot terminate execution until it receives 〈control , ∅〉 from all other
processors since other processors might send data messages for surrogate computation. Finally, P0
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Fig. 16. An algorithm for counting triangles using surrogate approach. Each processor Pi executes Line 1–22.

After that, they are synchronized, and the aggregation is performed (Line 24–25).

sums up counts from all processors using MPI aggregation function. The complete pseudocode of
our algorithm using surrogate approach is presented in Figure 16.

6.4 Partitioning and Load Balancing

While constructing partitions i , set of nodesV is partitioned into p disjoint subsetsV c
i of consecu-

tive nodes. Ideally, the setV should be partitioned in such a way that the cost for counting triangles
is almost equal for all processors. Similar to our fast parallel algorithm presented in Section 5, we
need to compute p disjoint partitions of V such that for each partition V c

i :∑
v ∈V c

i

f (v ) ≈ 1

p

∑
v ∈V

f (v ). (6)

Several estimations for f (v ) were proposed in Section 5 among which f (v ) =
∑

u ∈Nv
(d̂v + d̂u )

was shown experimentally as the best. Since our algorithm employs a different communication
scheme for counting triangles, none of those estimations corresponds to the cost of this algorithm.
Thus, we derive a new cost function f (v ) to estimate the computational cost of our algorithm
more precisely.

Deriving An Estimation for Cost Function f (v ). We want to find f (v ) such that
∑

v ∈V c

i
f (v ) gives

a good estimation of the computation cost incurred on processor Pi . We derive f (v ) as follows.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 5. Publication date: December 2019.



Fast Parallel Algorithms for Counting and Listing Triangles in Big Graphs 5:21

Recall that Nv = {u : (u,v ) ∈ E} and Nv = {u : (u,v ) ∈ E,v ≺ u}. Then, it is easy to see that

u ∈ Nv − Nv ⇔ v ∈ Nu . (7)

Now, Pi performs two types of computations due to all v ∈ V c
i as follows.

(1) Surrogate or delegated computation: Pi compute Nv ∩ Nu for all v ∈ Nu and u ∈ V c
j , i � j,

i.e., u ∈ (Nv − Nv ) ∩ (V −V c
i ). The cost incurred on Pi for such u and v is given by

Θ ��
�

∑
v ∈V c

i

∑
u ∈(Nv−Nv )∩(V−V c

i
)

(d̂v + d̂u )��
�
.

(2) Local computation: Pi compute Nv ∩ Nu for allu ∈ Nv ∩V c
i . Let Ec

i be the set of edges (u,v )
where both u and v are inV c

i , i.e., Ec
i = {(u,v ) ∈ E |u,v ∈ V c

i }. Now, the cost incurred on Pi

for local computations is given by

Θ ��
�

∑
v ∈V c

i

∑
u ∈Nv∩V c

i

(d̂v + d̂u )��
�
= Θ ��

�

∑
(u,v )∈Ec

i

(d̂v + d̂u )��
�

= Θ ��
�

∑
v ∈V c

i

∑
u ∈(Nv−Nv )∩V c

i

(d̂v + d̂u )��
�
.

By adding costs from (1) and (2) above, we get the computation cost:

Θ ��
�

∑
v ∈V c

i

∑
u ∈Nv−Nv

(d̂v + d̂u )��
�
.

Now, if we assign f (v ) =
(∑

u ∈Nv−Nv
(d̂v + d̂u )

)
, the computation cost incurred on Pi becomes∑

v ∈V c

i
f (v ). Thus, we use the following cost function:

f (v ) = ��
�

∑
u ∈Nv−Nv

(d̂v + d̂u )��
�
.

Parallel computation of the cost function f (v ). In parallel, each processor Pi computes f (v ) for all
v ∈ Ci . Recall that Ci is the set of all nodes in the ith chunk, as discussed in Section 5.4. Function
f (v ) =

(∑
u ∈Nv−Nv

(d̂v + d̂u )
)

is computed as follows.

(i) First Pi computes d̂v , v ∈ Ci : computing d̂v requires du for all u ∈ Nv . Let u ∈ Cj . Then, Pi

sends a request message to Pj , and Pj replies with a message containing du .

(ii) Then, Pi finds d̂u for all u ∈ Nv − Nv : let u ∈ Cj . Pi sends a request message to Pj , and Pj

replies with a message containing d̂u .
(iii) Now, f (v ) =

∑
u ∈Nv−Nv

(d̂v + d̂u ) is computed using d̂v and d̂u obtained in step (i ) and (ii ).

Computing balanced partitions. Once f (v ) is computed for all v ∈ V , we compute V c
i using the

same algorithm we used for overlapping partitioning as described in Section 5.

6.5 Correctness of the Algorithm

The correctness of our space efficient parallel algorithm is formally presented in the following
theorem.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 5. Publication date: December 2019.



5:22 S. Arifuzzaman et al.

Table 6. Number of Messages Exchanged in

Direct and Surrogate Approaches

Networks
# of Messages

Ratio
Direct Surrogate

Miami 16,321,478 3,987,871 4.09
web-Google 493,488 99,221 4.97
LiveJournal 23,138,824 4,002,575 5.78
Twitter 247,821,246 25,341,984 9.78
PA(10M, 100) 99,436,823 8,092,340 12.29

Theorem 6.1. Given a graphG = (V ,E), our space efficient parallel algorithm counts every trian-

gle in G exactly once.

Proof. Consider a triangle (x1,x2,x3) in G, and without the loss of generality, assume that
x1 ≺ x2 ≺ x3. By the constructions of Nx (Line 2–4 in Figure 2), we have x2,x3 ∈ Nx1 and x3 ∈ Nx2 .
Now, there are two cases:

—case 1. x1,x2 ∈ V c
i : Nodes x1 and x2 are in the same partition i . Processor Pi executes the

loop in Line 2–6 (Figure 16) with v = x1 and u = x2, and node x3 appears in S = Nx1 ∩ Nx2 ,
and the triangle (x1,x2,x3) is counted once. But this triangle cannot be counted for any
other values of v and u because x1 � Nx2 and x1,x2 � Nx3 .

—case 2. x1 ∈ V c
i ,x2 ∈ V c

j , i � j: Nodes x1 and x2 are in two different partitions i and j, re-
spectively. Pi attempts to count the triangle executing the loop in Line 2–6 with v = x1 and
u = x2. However, since x2 � V c

i , Pi sends Nx1 to Pj (Line 8). Pj counts this triangle while
executing the loop in Line 10–12 with X = Nx1 , and node x3 appears in S = Nx2 ∩ Nx1 (Line
4 in Figure 15). This triangle can never be counted again in any processor, since x1 � Nx2

and x1,x2 � Nx3 .

Thus, each triangle in G is counted once and only once. �

6.6 Analysis of the Number of Messages

Forv ∈ V c
i , we call (v,u) ∈ E a cut edge ifu ∈ V c

j , j � i . Let �v j is the number of cut edges emanating
from node v to all nodes u in partition j with v ≺ u. Now, in Surrogate approach, for all such cut
edges (v,u), processor Pi sends Nv to Pj at most once instead of �v j times. This leads to a saving
of the number of messages by a factor of �v j for each v ∈ V c

i . To get a crude estimate of how the
number of messages for direct and surrogate approaches compare, let � be the number of cut edges
�v j averaged over all v ∈ V c

i and partitions j. Then, the number of messages exchanged in direct

approach is roughly � larger than surrogate approach.
As shown experimentally in Table 6, direct approach exchanges messages that is 4 to 12 times

larger than that of surrogate approach. Thus, surrogate approach reduces approximately 70% to
90% of messages leading to faster computations as shown in Table 7 of the following section.

6.7 Experimental Evaluation

We presented the experimental evaluation of our algorithm with overlapping partitioning in Sec-
tion 5.5. In this section, we present the performance of our parallel algorithm with non-overlapping
partitioning and compare it with other related algorithms. We will denote our algorithm with
overlapping partitioning as AOP and the algorithm with non-overlapping partitioning as ANOP

for the convenience of discussion.
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Table 7. Runtime Performance of Our Algorithms AOP and ANOP

Networks
Runtime Part.

time
Comm.

time
Triangles

AOP Direct Surrogate
web-BerkStan 0.10 s 0.8 s 0.14 s 0.005 s 0.0345 s 65M
Miami 0.6 s 3.85 s 0.79 s 0.027 s 0.183 s 332M
LiveJournal 0.8 s 5.12 s 1.24 s 0.03 s 0.411 s 286M
Orkut 1.45 s 9.33 s 2.25 s 0.054 s 0.757 s 627.6M
Twitter 9.4 m 35.49 m 12.33 m 23.02 s 2.803 m 34.8B
PA(1B, 20) 15.5 m 78.96 m 20.77 m 45.01 s 4.98 m 0.403M
Friendster 10.81 m 41.03 m 14.18 m 26.45 s 3.16 m 4.17B

We used 200 processors for this experiment. We showed both direct and surrogate approaches for ANOP. The
reported runtime (in column 2, 3, and 4) is the total triangle counting time including partitioning and communi-
cation time. To show how much time is spent on partitioning, the column “Part. time” denotes the partitioning
time with DPD scheme. The column “comm. time” shows the communication time for Surrogate approach of
ANOP algorithm.

Table 8. Runtime of a Matrix Multiplication Based Distributed Parallel Algorithm

for Triangle Counting Given in [7]

Networks web-BerkStan Miami LiveJournal Orkut Twitter Friendster PA(1B, 20)
Runtime 3.28 s 7.21 s 10.26 s 18.85 s − − −

We found the algorithm does not scale to a large number of processors and the runtime performance deteriorates with
increasing the number of processors. We took the best runtime below while running with a couple of processors to a
hundred. Most of the times, they do not scale beyond 16 processors. The algorithm also fail to work on Twitter, Friendster,
and PA(1B, 20) networks.

Comparison with previous algorithms. Algorithm AOP does not require message passing for
counting triangles leading to a very fast algorithm (Table 7). In the contrary, ANOP achieves huge
space saving over AOP (Table 5), although ANOP requires message passing for counting triangles.
Our proposed communication approach (surrogate) reduces number of messages quite signifi-
cantly leading to an almost similar runtime efficiency to that of AOP. In fact, ANOP loses only
∼20% runtime efficiency for the gain of a significant space efficiency of up to 25 times, thus allow-
ing to work on larger networks.

Figure 17 demonstrates the runtimes for counting triangles in Twitter network with other re-
lated algorithms [36, 38, 49]. Our algorithms AOP and ANOP take 9.4 minutes and 12.33 minutes,
respectively, with 200 processors. The other algorithms, [49], [36], and [38], require more than
90 minutes with a significantly larger number of processors.

We also experimented with the distributed matrix multiplication based algorithm GraphPad
presented in [7] on the same set of networks as given in Table 7. The runtime performance of
the algorithm is given in Table 8. As evident from both Tables 7 and 8, our algorithm ANOP is
significantly faster than GraphPad. Further, our fastest algorithm AOP is more than 10 times faster
than GraphPad for all networks. Besides, GraphPad fails to count triangles in the larger three
networks. The authors of the GraphPad paper explain and acknowledge that triangle counting is
computationally expensive with matrix-based frameworks including GraphPad (last paragraph of
Section VI in [7]).

Strong scaling. Figure 18 shows strong scaling (speedup) of our algorithm ANOP on Miami, Live-
Journal, and web-BerkStan networks with both direct and surrogate approaches. Speedup factors
with the surrogate approach are significantly higher than that of the direct approach due to its
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Fig. 17. Runtime reported by various algo-

rithms for counting triangles in Twitter net-

work.

Fig. 18. Speedup factors of our algorithm

with both direct and surrogate approaches.

Fig. 19. Improved scalability of our algo-

rithm with increasing network size.

Fig. 20. Comparison of the cost function

f (v ) estimated for our algorithm with non-

overlapping partitioning and the best func-

tion д(v ) in Section 5.

capability to reduce communication cost drastically. We have experimented our algorithms using
up to 1,024 processors (we did not have access to more than 1,024 processors) and these results
show that the algorithm scales very well up to this many processors. Further, ANOP scales to a
higher number of processors when networks grow larger, as shown in Figure 19. This is, in fact,
a highly desirable behavior since we need a large number of processors when the network size is
large and computation time is high.

Effect of estimations for f(v). We show the performance of our algorithm ANOP with the new cost
function f (v ) =

∑
u ∈Nv−Nv

(d̂v + d̂u ) and the best function д(v ) =
∑

u ∈Nv
(d̂v + d̂u ) computed for

AOP. As Figure 20 shows, ANOP with f (v ) provides better speedup than that with д(v ). Function
f (v ) estimates the computational cost more precisely for ANOP with surrogate approach, which
leads to improved load balancing and better speedup.

Weak scaling. The weak scaling of our algorithm with non-overlapping partitioning is shown
in Figure 21. Since the addition of processors causes the overhead for exchanging messages to
increase, the runtime of the algorithm increases slowly. However, as the change in runtime is
rather slow (not drastic), our algorithm demonstrates a reasonably good weak scaling.
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Fig. 21. Weak scaling of our algorithm, ex-

periment performed on PA(t/10 ∗ 1M, 50) net-

works, t = number of processors used.

Fig. 22. Two triangles (v,u,w ) and (v ′,u,w )
with an overlapping edge (u,v ).

7 SPARSIFICATION-BASED PARALLEL APPROXIMATION ALGORITHMS

We discussed our parallel algorithms for counting the exact number of triangles in Sections 5
and 6. In this section, we show how those algorithms can be combined with an edge sparsification
technique to design a parallel approximation algorithm.

Sparsification of a network is a sampling technique where some randomly chosen edges are
retained and the rest are deleted, and then computation is performed on the sparsified network.
Such technique saves both computation time and memory space and provides an approximate
result. We integrate a sparsification technique, called DOULION, proposed in [52] with our paral-
lel algorithms. Our adapted version of DOULION provides more accuracy than DOULION when
used with overlapping partitioning. The adaptation with non-overlapping partitioning provides
the same accuracy as original DOULION.

7.1 Overview of the Sparsification

Let G (V ,E) and G ′(V ,E ′ ⊂ E) be the networks before and after sparsification, respectively. Net-
work G ′(V ,E ′) is obtained from G (V ,E) by retaining each edge, independently, with probability
q and removing with probability 1 − q. Now any algorithm can be used to find the exact number
of triangles in G ′. Let T (G ′) be the number of triangles in G ′. It is easy to see that the expected
value ofT (G ′) is q3T (G ), whereT (G ) is the number of triangles in the original networkG. Let the
triangles in G be arbitrarily numbered as 1, 2, . . . ,T (G ), and xi be an indicator random variable
that takes value 1 if triangle i of G survives in G ′. A triangle survives if all of its three edges are
retained in G ′. Then, we have Pr{xi = 1} = q3 and, by the linearity of expectation,

E
[
T (G ′)

]
=

T (G )∑
i=1

E[xi ] =
T (G )∑
i=1

Pr{xi = 1} = q3T (G ).

As shown in [52], the variance of the estimated number of triangles is

Var =

(
1

q3
− 1

)
T (G ) + 2k

(
1

q
− 1

)
, (8)

where k is the number of pairs of triangles in G with an overlapping edge (see Figure 22).

7.2 Parallel Sparsification Algorithm

In our parallel algorithm, sparsification is done as follows: each processor Pi independently per-
forms sparsification on its partition Gi (V ′i ,E

′
i ), where V ′i = Vi , E ′i = Ei for AOP and V ′i = V

c
i ,
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Fig. 23. Counting approximate number of triangles with parallel sparsification algorithm.

Table 9. Accuracy of Our Parallel Sparsification Algorithm and DOULION [52] with q = 0.1

Networks
Variance Avg. error (%) Max. error (%)

AOP ANOP DLN AOP ANOP DLN AOP ANOP DLN
web-BerkStan 1.287 1.991 2.027 0.389 0.391 0.392 1.024 1.082 1.082
LiveJournal 1.770 1.952 1.958 1.463 1.857 1.862 3.881 4.774 4.752
web-Google 1.411 2.003 1.998 1.327 1.564 1.580 2.455 3.923 3.942
Miami 1.675 2.105 2.112 1.55 1.921 1.905 3.45 4.88 4.75

Our parallel algorithm was run with 100 processors. Variance, max error and average error are calculated from 25 inde-
pendent runs for each of the algorithms. The best values for each attribute are marked as bold. DLN refers to DOULION.

E ′i = Ec
i for ANOP. While loading the partition Gi into its local memory, Pi retains each edge

(u,v ) ∈ E ′i with probability q and discards it with probability 1 − q as shown Figure 23.
Now, our parallel sparsification algorithm with overlapping partitioning is not exactly the same

as that of DOULION. Consider two triangles (v,u,w ) and (v ′,u,w ) with an overlapping edge
(u,w ) as shown in Figure 22. In DOULION, if edge (u,w ) is not retained, none of the two triangles
survive, and as a result, survivals of (v,u,w ) and (v ′,u,w ) are not independent events. Now, in our
case, if v and v ′ are core nodes in two different partitions Gi and G j , processor i may retain edge
(u,w ) while processor j discards (u,w ), and vice versa. As processor i and j perform sparsification
independently, survivals of triangles (v,u,w ) and (v ′,u,w ) are independent events.

However, our estimation is also unbiased, and in fact, this difference (with DOULION) improves
the accuracy of the estimation by our parallel algorithm. Since the probability of survival of any
triangle is still exactly q3, we have E [T ′] = q3T . To calculate variance of the estimation, let k ′i be
the number of pairs of triangles with an overlapping edge such that both triangles are in partition
Gi , and k ′ =

∑
i k
′
i . Let k ′′ be the number of pairs of triangles (v,u,w ) and (v ′,u,w ) with an over-

lapping edge (u,w ) (as shown in Figure 22) andv andv ′ are core nodes in two different partitions.
Then, clearly, k ′ + k ′′ = k and k ′ ≤ k . Now following the same steps as in [52], one can show that
the variance of our estimation is

Var′ =

(
1

q3
− 1

)
T (G ) + 2k ′

(
1

q
− 1

)
. (9)

Comparing Equations (8) and (9), if k ′′ > 0, we have k ′ < k and reduced variance leading to im-
proved accuracy. We verify this observation by the experimental results on one realistic synthetic
and three real-world networks in Table 9. For all networks, our parallel sparsification algorithm
with overlapping partitioning results in smaller variance and errors than that of DOULION. Here,
the error percentage (ep) is given by Equation (10).

ep =
|Text −Test | ∗ 100

Text
, (10)
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Table 10. Comparison of Accuracy between Our Parallel Sparsification Algorithms and DOULION

on One Realistic Synthetic and Three Real-World Networks with 100 Processors

Networks Algorithms q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5

web-BerkStan
AOP 99.9921 99.9927 99.9932 99.9947 99.9979

ANOP 99.6308 99.7490 99.8392 99.9168 99.9565
DOULION 99.6309 99.7484 99.8401 99.9171 99.9566

LiveJournal
AOP 99.9914 99.9917 99.9924 99.9936 99.9971

ANOP 99.6325 99.7488 99.8412 99.9178 99.9575
DOULION 99.6310 99.7544 99.8392 99.9121 99.9584

web-Google
AOP 99.9917 99.9923 99.9929 99.9939 99.9975

ANOP 99.6299 99.7391 99.8435 99.9168 99.9577
DOULION 99.6305 99.7398 99.8428 99.9170 99.9574

Miami
AOP 99.9916 99.9919 99.9926 99.9938 99.9974

ANOP 99.6285 99.7495 99.8384 99.9168 99.9562
DOULION 99.6288 99.7494 99.8381 99.9169 99.9563

The best values for each q are marked as bold.

where Text is the exact (actual) number of triangles and Test is the estimated number of trian-
gles given by the sparsification algorithm. Average (or Max) error percentage is the avarage (or
maximum) value of these error percentages for 25 different runs of the same algorithm.

However, the accuracy does not improve for parallel sparsification with non-overlapping parti-
tioning. Since the partitioning is non-overlapping, the effect of parallel sparsification is the same
as that of the sequential sparsification. As a result, our parallel sparsification algorithm with non-
overlapping partition has effectively the same accuracy as that of DOULION, as evident in Tables 9
and 10.

Sparsification reduces memory requirement since only a subset of the edges are stored in the
main memory. As a result, adaptation of sparsification allows our parallel algorithms to work with
even larger networks. With sampling probability q (the probability of retaining an edge), the ex-
pected number of edges to be stored in the main memory is q |E |. Thus, we can expect that the
use of sparsification with our parallel algorithms will allow us to work with a network 1/q times
larger. Sparsification technique also offers additional speedup due to working on a reduced graph.
In [52], it was shown that due to sparsification with parameter q, the computation can be faster
as much as 1/p2 times. However, in practice the speed up is typically smaller than 1/p2 but larger
than 1/p. As an example, with our parallel sparsification with AOP on LiveJournal network, we
obtain sparsification speedups of 57.88, 24.36, 11.04, 6.19, and 4.0 for q = 0.1 to 0.5, respectively.
When an application requires only an approximate count of the total triangles in graph with a rea-
sonable accuracy, such parallel sparsification algorithm will be proven useful. Table 11 shows the
comparison of runtimes with parallel sparsification and serial algorithms. Note that the speedups
gained in parallel sparsification with AOP and ANOP are due to both sparsification and
parallelization.

8 LISTING TRIANGLES IN GRAPHS

Our parallel algorithms for counting triangles in Sections 5 and 6 can easily be extended to list all
triangles in graphs. Triangle listing has various applications in the analysis of graphs such as the
computation of CCs, transitivity, triangular connectivity, and trusses [18]. Our parallel algorithms
counts the exact number of triangles in the graph. To count the number of triangles incident on an
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Table 11. Execution Time of Our Parallel Sparsification Algorithms

(with Both AOP and ANOP) and Serial Sparsification Algorithm

DOULION [52] with q = 0.1

Networks Serial Alg. DOULION AOP ANOP
Web-Google 1,250 36.7647 1.316 1.561
Web-BerkStan 1,400 41.1765 1.282 1.652
LiveJournal 42,000 1,200 30.684 41.379
Miami 32,300 950 26.694 34.75

Our parallel algorithm was run with 100 processors. Times are given in mil-
liseconds. This time includes the initial sparsification step. The serial algorithm
in column 2 is NodeIteratorN.

Fig. 24. Listing triangles after performing the set intersection operation for counting triangles.

edge (u,v ), the algorithms perform a set intersection operation Nv ∩ Nu . After each intersection
operation, all associated triangles can be listed simply by the code shown in Figure 24.

9 COMPUTING CLUSTERING COEFFICIENT OF NODES

Our parallel algorithms can be extended to compute local CC without increasing the cost sig-
nificantly. In a sequential setting, an algorithm for counting triangles can be directly used for
computing CCs of the nodes by simply keeping the counts of triangles for each node individually.
However, in a distributed-memory parallel system, combining the counts from all processors for
a node poses another level of difficulty. We present an efficient aggregation scheme for combining
the counts for a node from different processors.

Parallel computation of clustering coefficients. Recall that CCs of nodesv is computed as follows:

Cv =
Tv

( dv

2 )
=

2Tv

dv (dv − 1)
,

where Tv is the number of triangles containing node v .
Our parallel algorithms for counting triangles count each triangle only once. However, all trian-

gles containing a nodev might not be computed by a single processor. Consider a triangle (u,v,w )
with u ≺D v ≺D w . Further, assume that u ∈ V c

i , v ∈ V c
j , and w ∈ V c

k
, where i � j � k . Now, for

our parallel algorithm AOP, the triangle (u,v,w ) is counted by Pi . LetT i
v be the number of triangles

incident on node v computed by Pi . We also call such counts local counts of v in processor Pi . For
the triangle (u,v,w ), Pi tracks local counts of all of u, v , and w . Thus, the total count of triangles
incident on a node v might be distributed among multiple processors. Each processor Pi needs to
aggregate local counts of u ∈ V c

i from other processors. (For algorithm ANOP, the above triangle
(u,v,w ) is counted by Pj , and a similar argument as above holds.)

To aggregate local counts from other processors, the following approach can be adopted: for
each processor, we can store local counts T i

v in an array of size Θ(n) and then use MPI All-Reduce

function for the aggregation. However, for a large network, the required system buffer to perform
MPI aggregation on arrays of size Θ(n) might be prohibitive. Another approach for aggregation
might be as follows. Instead of using main memory, local counts can be written to disk files based
on some hash functions of nodes. Each processor Pi then aggregates counts for nodesv ∈ V c

i from
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Fig. 25. Tracking local counts by processor Pi . Each triangle (v,u,w ) is detected by the triangle listing algo-

rithm shown in Figure 24.

Fig. 26. Aggregating local counts for v ∈ V c
i by Pi .

P disk files. Even though this scheme saves the usage of main memory, performing a large number
of disk I/O leads to a large runtime.

Both of the above approach compromises either the runtime or space efficiency. We use the
following approach, which is both time and space efficient.

Our approach involves two steps. First, for each triangle counted by Pi , it tracks local countsT .i

as shown in Figure 25.
Second, processor Pi aggregates local counts of nodesv ∈ V c

i from other processors. Total num-

ber of trianglesTv incident on v is given byTv =
∑

j�i T
j

v . Each processor Pj sends local countsT j
v

of nodes v ∈ V c
i encountered in any triangles counted in partition j. Pi receives those counts and

aggregates toTv . We present the pseudocode of this aggregation in Figure 26. Finally, Pi computes
Cv =

2Tv

dv (dv−1) for each v ∈ V c
i .

Our approach tracks local counts for nodes v ∈ V c
i and neighbors of such v , which requires, in

practice, significantly smaller than Θ(n) space. Next, we show the performance of our algorithm.

Performance. We show the strong and weak scaling of our algorithm for computing CCs of nodes
in Figures 27 and 28, respectively. The algorithm shows good speedups and scales almost linearly to
a large number of processors. Since aggregating local counts introduces additional inter-processor
communication, the speedups are a little smaller than that of the triangle counting algorithms.
For the same reason, the weak scalability of the algorithm is a little smaller than that of the trian-
gle counting algorithms. However, the increase of runtime with additional processors is still not
drastic, and the algorithm shows a good weak scaling.

10 APPLICATIONS FOR COUNTING TRIANGLES

The number of triangles in graphs have many important applications in data mining. Becchetti
et al. [14] showed how the number of triangles can be used to detect spamming activity in web
graphs. They used a public web spam dataset and compared it with a non-spam dataset: first, they
computed the number of triangles for each host and plotted the distribution of triangles and CCs for
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Fig. 27. Strong scaling of clustering coefficient

algorithm with both AOP and ANOP on Live-

Journal and Twitter networks.

Fig. 28. Weak scaling of the algorithms for

computing clustering coefficient (CC) and

counting triangles (TC).

Table 12. Comparison of the Number of Triangles (�)

and Normalized Triangle Count (NTC) in Various

Networks

Network n � NTC(�/n)
Gnp(500K , 20) 500K 1308 0.0026
PA(25M, 50) 25M 1.3M 0.052

Email-Enron 37K 727044 19.815
web-Google 0.88M 13.39M 15.293

LiveJournal 4.85M 285.7M 58.943
web-BerkStan 0.69M 64.69M 94.408

Miami 2.1M 332M 158.095
Orkut 3.07M 627.6M 204.262
Twitter 42M 34.8B 828.571

We used both artificially generated and real-world networks.

both dataset. Using Kolmogorov–Smirnov test, they concluded the distributions are significantly
different for spam and non-spam datasets. Further, the authors also showed how to comment on
the role of individual nodes in a social network based on the number of triangles they participate.
Eckmann et al. [20] used triangle counting in uncovering the thematic structure of the web. The
abundance of triangles also implies community structures in graphs. Nodes forming a subgraph
of high triangular density usually belong to the same community. In fact, the number of triangles
incident on nodes has been used by several methods in the literature of community detection [41,
47, 57]. The computation of CCs also requires the number of triangles incident on nodes. Social
networks usually demonstrate high average CCs. We show how CCs can be computed using our
parallel algorithms in Section 9.

In this section, we discuss how the number of triangles can be used to characterize various types
of networks. There is a multitude of real-world networks including social contact networks, on-
line social networks, web graphs, and collaboration networks. These networks vary in terms of
triangular density and community or social structure in them. As a result, it is possible to char-
acterize real-world networks based on their triangle based statistics. We define the normalized

triangle count (NTC) as the mean number of triangles per node in the network. We compute NTC
for a variety of networks and show the comparison in Table 12. Many random graph models such
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as Erdős–Réyni and PA models do not generate many triangles, and the resulting NTCs are also
very low. Some communication and web graphs (e.g., Email-Enron) generate a descent number
of triangles because of the nature of the communication and links among web pages in the host
domain. When social or cluster structure exists in the network, we get a larger number of triangles
per node, as shown in Table 12 for LiveJournal and web-BerkStan networks. Further, for networks
with a more developed social structure and realistic person-to-person interactions, NTCs are very
large, as evident for Miami, Orkut, and Twitter networks. Thus, the number of triangles offers
good insights about the underlying social and community structures in networks.

11 OTHER PROMINENT RELATED WORK

Azad et al. [10] provide parallel implementation of triangle counting and enumeration based on
matrix algebra. Their method scales to networks with around 100M edges. Scalability on large
graphs and processing cores is adversely affected by communication cost. Their implementation
of SpRef (computation of submatrices requested by other processors) is also not efficient and dom-
inates the overall cost.

Satish et al. [43] compared several graph analytics frameworks using a number of graph algo-
rithms (including triangle counting). They reported the performance gaps between native opti-
mized implementation and framework implementations, and proposed suggestion for improve-
ment. (They did not provide the detailed description of their native implementation.)

The work in [19] provides MapReduce based algorithms for several graph problems including
the one for enumerating triangles. The work does not provide any experimental evaluation though.

Anderson et al. [7] implement distributed sparse matrix–vector and matrix–matrix multiplica-
tion primitives to use in several graph applications including triangle counting. The combination of
MPI and OpenMP based implementation of triangle counting is reported to scale to only 64 nodes
for graphs with a couple of hundred million edges. We provided an experimental comparison of
their work and ours in Section 6.7. Ortmann et al. [35] presented a generic framework of sequential
triangle counting algorithms identifying different variants of such algorithms and their running
time.

The work in [37] provides MapReduce based algorithms for triangle enumeration by improving
a previous algorithm given in [36]. Their algorithms scale well for several large-scale web graphs
up to 41 machines.

Elenberg et al. [22] provide a sampling based approximation algorithms for counting triangles
on a distributed platform (based on GraphLab PowerGraph framework). Ahmed et al. [3] also
provide estimation methods for local graphlets including triangles. They also present a shared-
memory based parallel implementation. The article demonstrates scalability on 16 cores for several
medium-scale graphs. Lim et al. [32] presented sampling based algorithms (MASCOT) for counting
triangles in a streaming setting– a graph is represented as stream of edges. A subsequent work by
Stefani et al. [48] provides another sampling based algorithm for graph streams and demonstrates
improved accuracies over MASCOT and several other approaches.

Recent MIT GraphChallenge competitions have produced several efficient and scalable algo-
rithms for triangle counting [15, 40, 54, 55]. The work in [55] uses linear algebra-based approach.
The article reports performance improvement of several order of magnitude over a Python based
reference implementation. However, the article focuses mainly on performance on a single multi-
core node. Voegele et al. [54] provide a CPU and GPU based implementation in the Galois and IrGL
systems. The implementations are based on a graph-centric abstraction called the operator formu-
lation of algorithms. The article presents optimization specifically for GPU based systems. The
work in [15] also provide GPU-based implementation of triangle counting algorithm. For Twit-
ter graph, the reported execution time is 196 seconds. Another work given in [40] provides an
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implementation of triangle counting using HavoqGT framework (an asynchronous vertex-centric
graph analytics framework). The work achieves 4.7 times improvement over the reference imple-
mentation of GraphChallenge. However, the article did not provide an extensive comparison with
other related work. The work in [25] presents another GPU-based algorithm using 2-D graph par-
titioning and binary search based intersection. The algorithm can process a graph with 64 billion
edges in 35 minutes.

All of the above work make important contributions to solving the problem of triangle count-
ing and enumeration. However, they differ in focuses (exact or approximate solution), platforms
or programming paradigm (shared memory, MapReduce, MPI, etc.), and solution strategies (e.g.,
matrix-based, set intersection based), among others. Unlike many existing methods mentioned
above, our algorithms provide exact solutions for MPI-based distributed memory system. We de-
sign parallel communication and load balancing schemes to enhance scalability of the solutions.
We showed how these solution can be extended for approximate solutions using any sparsification
methods (e.g., DOULION). Our methods complement many existing work by providing alternate
approaches and also outperform several related approaches as evident in our experiment sections.
We believe our methods will be useful for distributed graph computation domain—where a single
machine cannot store or work with the entire graph, or when the input graph is distributed from a
previous step of the workflow, or when alternative resources (large shared memory or GPU cores)
are not available to the users.

12 CONCLUSION

We presented parallel algorithms for counting triangles and computing CCs in massive networks.
These algorithms can work with networks that have billions of nodes and edges. Such capability
of our algorithms will enable various types of analysis of massive real-world networks, networks
that otherwise do not fit in the main memory of a single computing node. These algorithms show
very good scalability with both the number of processors and the problem size and performs well
on both real-world and artificial networks. We have been able to count triangles of a massive net-
work with 10B edges in less than 16 minutes. We presented several load balancing schemes and
showed that such schemes provide very good balancing. Further, we have adopted the sparsifica-
tion approach of DOULION in our parallel algorithms with improved accuracy. This adoption will
allow us to deal with even larger networks. We also extend our triangle counting algorithm for
listing triangles and computing CCs in massive graphs.
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