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• Community detection in network is very important to understand
complex networks and extract information in graph mining

• Louvain algorithm is one of the efficient algorithms for
community detection

• Emerging size of social networks, increased amount of data over
time require parallelization of algorithms

• Parallel algorithms are necessary to deal with networks [1] of
billions of vertices and edges

• We provide a comparative analysis of Parallel Louvain Algorithms
• We present a hybrid parallel algorithm using both OpenMP and

MPI

Overview

• Shared Memory Challenges
• do not scale to a large number of cores and large networks

[3]
• Distributed Memory Challenges

• Communication Overhead
• Efficient Load-balancing Scheme

• Hybrid (Shared + Distributed) Challenges
• Utilize the advantages and minimize the disadvantages of

both shared and distributed memory

Louvain Parallelization Challenges

• Finding an efficient load balancing technique for graph
partitioning to minimize communication overhead

• Eliminating the effect of small communities  hindering the
detection of meaningful medium sized communities

• Investigating the effect of node ordering (e.g., degree based
ordering, kcores and clustering coefficients)

Future Works

Louvain Algorithm

• Detects community based on modularity optimization [2]
• Better than other community detection algorithms in terms of

• Computation time and
• Quality of the detected communities

❑Modularity Calculation
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Here,
𝑄 = Modularity
𝐴𝑖𝑗 = Link weight between nodes i and j

𝑚 = Total link weight in the network
𝑘𝑖 = Sum of the link weights attached to node i
𝑐𝑖 = Community to which node i is assigned

𝛿 𝑐𝑖𝑐𝑗 = Kronecker delta. Value is 1 when nodes i and j are 

assigned to the same community. Otherwise, the value is 0
❑2 Phases

➢Modularity Optimization- looks for "small" communities by 
local optimization of modularity

➢ Community Aggregation- aggregating nodes of the same 
community a new network  is built with the communities as 
nodes

❑Performance Analysis
✓ 4-fold speedup for several real-world networks.

❑Limitations
✓ speedup is limited by physical cores available to system

Shared-Memory (OpenMP) Based Louvain Parallelization

Figure 1. Two phases of Louvain Algorithm
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Figure 2. Speedup factor of Parallel Louvain for different networks
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b. Distributed
Memory

❑2 phases
▪ Graph Partitioning
▪ Community Detection

❑Performance Analysis
✓ existing only MPI algorithm [4] has shown scalability to only 

16 processors, that we have increased to larger number of 
processors

❑Limitations
✓ Communication overhead bottlenecks

• Graph internal properties
• Time spent in communication among processors

Distributed-Memory (MPI) Based Louvain Parallelization

• There remains an opportunity to adjust between OpenMP and
MPI depending on available resources

• Result is close to both MPI and OpenMP implementations
❑Performance Analysis

✓ Very small speedup of around 2  alike the pure MPI 
implementation

✓ For single and multi-threads, runtime is quite similar
✓ In some cases, multi-threaded runtime is more than that of 

single thread
❑Limitations

✓ Communication overhead of distributed memory limits the 
performance of multi-threading environment

Hybrid (OpenMP+MPI) Louvain Parallelization

➢ In first level, with smaller number of processors, number of 
community decreases more quickly

➢ In final level, with larger number of processors, we achieve fewer 
communities

➢We find that Louvain algorithm creates many small communities 
at the final level

Other Findings

Figure 3. Runtime analysis of DBLP for varied no. of processors using MPI
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Figure 4. Number of communities at different level of iteration for Parallel 
Louvain using MPI
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Figure 5. Runtime analysis for varied network size using MPI+OpenMP
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Figure 6. Speedup factor of Parallel Louvain for different networks using 
MPI+OpenMP

Network Sequential OpenMP MPI OpenMP+MPI
Community No. Community 

No.
Deviation 
(%)

Community 
No.

Deviation 
(%)

Community 
No.

Deviation 
(%)

wiki-Vote 1213 1213 0 1216 0.042 1163 0.71

com-DBLP 109104 109102 .0006 109441 0.106 104668 1.39

Table 2. Deviation of number of Communities for different parallel approaches
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Community Size No. of Community Percentage (%)

Sequential Parallel  
(MPI)

Sequential Parallel 
(MPI)

1 108877 108877 99.80 99.17

2-10 46 266 0.042 0.242

11-100 40 530 0.037 0.483

101-1000 51 88 0.0467 0.080

1001-10000 82 25 0.075 0.023

10001-22000 3 2 0.0027 0.002

Table 1. Percentage of Community Size for DBLP Network 
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