
A Comparative Analysis of Parallel Louvain Algorithms for Community Detection

Naw Safrin Sattar, Shaikh Arifuzzaman
Department of Computer Science, University of New Orleans, New Orleans, LA 70148 USA

This work has been partially supported by Louisiana Board of Regents
RCS Grant LEQSF(2017-20)-RDA-25 and University of New Orleans
ORSP Award CON000000002410.

Acknowledgements

1. ”Stanford Large Network Dataset Collection”, Snap.stanford.edu. [Online]. Available:
https://snap.stanford.edu/data/index.html.

2. V. Blondel, J. Guillaume, R. Lambiotte and E. Lefebvre, ”Fast unfolding of communities in large networks”,
Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

References

• Community detection in network is very important to understand
complex networks and extract information in graph mining

• Louvain algorithm is one of the efficient algorithms for
community detection

• Emerging size of social networks, increased amount of data over
time require parallelization of algorithms

• Parallel algorithms are necessary to deal with networks [1] of
billions of vertices and edges

• We provide a comparative analysis of Parallel Louvain Algorithms
• We present a hybrid parallel algorithm using both OpenMP and

MPI

Overview

• Shared Memory Challenges
• do not scale to a large number of cores and large networks

[3]
• Distributed Memory Challenges

• Communication Overhead
• Efficient Load-balancing Scheme

• Hybrid (Shared + Distributed) Challenges
• Utilize the advantages and minimize the disadvantages of

both shared and distributed memory

Louvain Parallelization Challenges

• Finding an efficient load balancing technique for graph
partitioning to minimize communication overhead

• Eliminating the effect of small communities hindering the
detection of meaningful medium sized communities

• Investigating the effect of node ordering (e.g., degree based
ordering, kcores and clustering coefficients)

Future Works

Louvain Algorithm

• Detects community based on modularity optimization [2]
• Better than other community detection algorithms in terms of

• Computation time and
• Quality of the detected communities

❑Modularity Calculation

𝑄 =
1

2𝑚

𝑖𝑗

𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
𝛿 𝑐𝑖𝑐𝑗

Here,
𝑄 = Modularity
𝐴𝑖𝑗 = Link weight between nodes i and j

𝑚 = Total link weight in the network
𝑘𝑖 = Sum of the link weights attached to node i
𝑐𝑖 = Community to which node i is assigned

𝛿 𝑐𝑖𝑐𝑗 = Kronecker delta. Value is 1 when nodes i and j are

assigned to the same community. Otherwise, the value is 0
❑2 Phases

➢Modularity Optimization- looks for "small" communities by
local optimization of modularity

➢ Community Aggregation- aggregating nodes of the same
community a new network is built with the communities as
nodes

❑Performance Analysis
✓ 4-fold speedup for several real-world networks.

❑Limitations
✓ speedup is limited by physical cores available to system

Shared-Memory (OpenMP) Based Louvain Parallelization

Figure 1. Two phases of Louvain Algorithm

a. Shared
Memory

0
0.5

1
1.5

2
2.5

3
3.5

4

0 20 40 60 80 100 120 140

Sp
ee

d
u

p

No. of Threads

Speedup Vs No. of Threads

DBLP p2p-G-31

Figure 2. Speedup factor of Parallel Louvain for different networks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60 70 80 90 100

Sp
ee

d
u

p

No. of Processors

Speedup Vs No. of Processors

DBLP wiki-Vote

b. Distributed
Memory

❑2 phases
▪ Graph Partitioning
▪ Community Detection

❑Performance Analysis
✓ existing only MPI algorithm [4] has shown scalability to only

16 processors, that we have increased to larger number of
processors

❑Limitations
✓ Communication overhead bottlenecks

• Graph internal properties
• Time spent in communication among processors

Distributed-Memory (MPI) Based Louvain Parallelization

• There remains an opportunity to adjust between OpenMP and
MPI depending on available resources

• Result is close to both MPI and OpenMP implementations
❑Performance Analysis

✓ Very small speedup of around 2 alike the pure MPI
implementation

✓ For single and multi-threads, runtime is quite similar
✓ In some cases, multi-threaded runtime is more than that of

single thread
❑Limitations

✓ Communication overhead of distributed memory limits the
performance of multi-threading environment

Hybrid (OpenMP+MPI) Louvain Parallelization

➢ In first level, with smaller number of processors, number of
community decreases more quickly

➢ In final level, with larger number of processors, we achieve fewer
communities

➢We find that Louvain algorithm creates many small communities
at the final level

Other Findings

Figure 3. Runtime analysis of DBLP for varied no. of processors using MPI

211689
213569

214807215560

210000

212000

214000

216000

40 60 80 100C
o

m
m

u
n

it
ie

s

Processor

Processor Vs. Community
(1st Level)

109788
109631

109463109441
109300

109500

109700

40 60 80 100C
o

m
m

u
n

it
ie

s

Processor

Processor Vs. Community
(Final Level)

Figure 4. Number of communities at different level of iteration for Parallel
Louvain using MPI

100000

1000000

10000000

1000

6000

11000

16000

21000

26000

31000

36000

0 5 10 15 20 25 30 35

TI
M

E
(M

S)

TI
M

E
(M

S)

NO. OF THREADS

TIME(MS) VS NO. OF THREADS

email-Eu-core

ego-Facebook

wiki-Vote

p2p-G-25

p2p-G-30

p2p-G-31

Slashdot

DBLP

Figure 5. Runtime analysis for varied network size using MPI+OpenMP

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

Sp
ee

d
u

p

No. of Threads

Speedup Vs No. of Threads

email-Eu-core

wiki-Vote

p2p-G-30

DBLP

Figure 6. Speedup factor of Parallel Louvain for different networks using
MPI+OpenMP

Network Sequential OpenMP MPI OpenMP+MPI
Community No. Community

No.
Deviation
(%)

Community
No.

Deviation
(%)

Community
No.

Deviation
(%)

wiki-Vote 1213 1213 0 1216 0.042 1163 0.71

com-DBLP 109104 109102 .0006 109441 0.106 104668 1.39

Table 2. Deviation of number of Communities for different parallel approaches

3. S. Bhowmick and S. Srinivasan, A Template for Parallelizing the Louvain Method for Modularity Maximization, in
Dynamics On and Of Complex Networks, Volume 2, Springer New York, 2013, pp. 111124.

4. C. Wickramaarachchi, M. Frincuy, P. Small and V. Prasannay, ”Fast Parallel Algorithm For Unfolding Of Communities In
Large Graphs”, in High Performance Extreme Computing Conference (HPEC), 2014.

Community Size No. of Community Percentage (%)

Sequential Parallel
(MPI)

Sequential Parallel
(MPI)

1 108877 108877 99.80 99.17

2-10 46 266 0.042 0.242

11-100 40 530 0.037 0.483

101-1000 51 88 0.0467 0.080

1001-10000 82 25 0.075 0.023

10001-22000 3 2 0.0027 0.002

Table 1. Percentage of Community Size for DBLP Network

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

10 20 30 40 50 60 70 80 90 100

TI
M

E
(M

S)

NO. OF PROCESSORS

TIME (MS) VS NO. OF PROCESSORS
gathering neighbour
info
exchanging updated
community
exchanging duality
resolved community
Total duration

