®

Check for
updates

Overcoming MPI Communication
Overhead for Distributed
Community Detection

Naw Safrin Sattar®™) and Shaikh Arifuzzaman®)

Department of Computer Science, University of New Orleans,
New Orleans, LA 70148, USA

{nsattar,smarifuz}@uno.edu

Abstract. Community detection is an important graph (network) anal-
ysis kernel used for discovering functional units and organization of a
graph. Louvain method is an efficient algorithm for discovering commu-
nities. However, sequential Louvain method does not scale to the emerg-
ing large-scale network data. Parallel algorithms designed for modern
high performance computing platforms are necessary to process such
network big data. Although there are several shared memory based par-
allel algorithms for Louvain method, those do not scale to a large num-
ber of cores and to large networks. One existing Message Passing Inter-
face (MPI) based distributed memory parallel implementation of Louvain
algorithm has shown scalability to only 16 processors. In this work, first,
we design a shared memory based algorithm using Open MultiProcess-
ing (OpenMP), which shows a 4-fold speedup but is only limited to the
physical cores available to our system. Our second algorithm is an MPI-
based distributed memory parallel algorithm that scales to a moderate
number of processors. We then implement a hybrid algorithm combining
the merits from both shared and distributed memory-based approaches.
Finally, we incorporate a parallel load balancing scheme, which leads
to our final algorithm DPLAL (Distributed Parallel Louvain Algorithm
with Load-balancing). DPLAL overcomes the performance bottleneck of
the previous algorithms with improved load balancing. We present a com-
parative analysis of these parallel implementations of Louvain methods
using several large real-world networks. DPLAL shows around 12-fold
speedup and scales to a larger number of processors.

Keywords: Community detection - Louvain method -
Parallel algorithms + MPI - OpenMP - Load balancing + Graph mining

1 Introduction

Parallel computing plays a crucial role in processing large-scale graph data
[1,2,5,27]. The problem of community detection in graph data arises in many
scientific domains [11], e.g., sociology, biology, online media, and transportation.

© Springer Nature Singapore Pte Ltd. 2019
A. Majumdar and R. Arora (Eds.): SCEC 2018, CCIS 964, pp. 77-90, 2019.
https://doi.org/10.1007/978-981-13-7729-7_6

smarifuz@uno.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7729-7_6&domain=pdf
https://doi.org/10.1007/978-981-13-7729-7_6

78 N. S. Sattar and S. Arifuzzaman

Due to the advancement of data and computing technologies, graph data is grow-
ing at an enormous rate. For example, the number of links in social networks
[14,26] is growing every millisecond. Processing such graph big data requires the
development of parallel algorithms [1-5]. Existing parallel algorithms are devel-
oped for both shared memory and distributed memory based systems. Each
method has its own merits and demerits. Shared memory based systems are
usually limited by the moderate number of available cores [18]. The increase in
physical cores is restricted by the scalability of chip sizes. On the other hand, a
large number of processing nodes can be used in distributed-memory systems.
Although distributed memory based parallelism has the freedom of communi-
cating among processing nodes through passing messages, an efficient commu-
nication scheme is required to overcome communication overhead. We present a
comparative analysis of our shared and distributed memory based parallel Lou-
vain algorithms, their merits and demerits. We also develop a hybrid parallel
Louvain algorithm using the advantage of both shared and distributed memory
based approaches. The hybrid algorithm gives us the scope to balance between
both shared and distributed memory settings depending on available resources.
Load balancing is crucial in parallel computing. A straight-forward distribution
with an equal number of vertices per processor might not scale well [2]. We
also find that load imbalance also contribute to a higher communication over-
head for distributed memory algorithms [4]. A dynamic load balancing [3,25]
approach can reduce the idle times of processors leading to increased speedup.
Finding a suitable load balancing technique is a challenge in itself as it largely
depends on the internal properties of a network and the applications [21]. We
present DPLAL, an efficient algorithm for distributed memory setting based on
a parallel load balancing scheme and graph partitioning.

2 Related Work

There exists a rich literature of community detection algorithms [6-8,15,16, 20,
24,27]. Louvain method [7] is found to be one of the most efficient sequential
algorithms [15,16]. In recent years, several works have been done for paralleling
Louvain algorithm and a majority of those are shared memory based implemen-
tations. These implementations demonstrate only a moderate scalability. One of
the fastest shared memory implementations is Grappolo software package [12,17],
which is able to process a network with 65.6M vertices using 20 compute cores. One
of the MPI based parallel implementations [27] of Louvain method reported scal-
ing for only 16 processors. Later, in [10] the authors could run large graphs with
1,000 processing cores for their MPI implementation but did not provide a com-
prehensive speedup results. Their MPI+OpenMP implementation demonstrated
about 7-fold speedup on 4, 000 processors. But the paper uses a higher threshold
in lower levels in Louvain method to terminate the level earlier and thus mini-
mized the time contributing to their higher speedup. The work also lacks on the
emphasis on graph partitioning and balancing load among the processors. This is
a clear contrast with our work where we focused on load balancing issue among

smarifuz@uno.edu

Overcoming MPI Communication Overhead 79

others. Our work achieves comparable (or better in many cases) speedups using a
significantly fewer number of processors than the work in [10].

3 Background

In this section, we present the Louvain algorithm in brief and discuss the com-
putational model of our parallel algorithms. Note that we use the words vertez
and node interchangeably in the subsequent discussions of this paper. The same
is the case for the words graph and network.

3.1 Louvain Algorithm

Louvain algorithm [7] detects community based on modularity optimization. It
demonstrates better performance than other community detection algorithms
in terms of computation time and quality of the detected communities [15].
Modularity is calculated using Eq. 1.

1 kik;
Q=5 3 [4s - 52) 0
Here,
@ = Modularity
A;; = Link weight between nodes i and j
m = Total link weight in the network
k; = Sum of the link weights attached to node ¢
¢; = Community to which node ¢ is assigned
0 (¢i, ¢j) = Kronecker delta Value is 1 when nodes ¢ and j are assigned to the

same community. Otherwise, the value is 0.

Louvain algorithm has 2 Phases:

B Modularity Optimization: This step looks for “small” communities by
local optimization of modularity.

B Community Aggregation: This step aggregates nodes of the same com-
munity to form a super-node and thus create a new smaller network to work
on in the next iteration.

Details on the above steps can be found in [7].

3.2 Computational Model

We develop our shared memory based parallel algorithm using Open Multi-
Processing (OpenMP) library. Then, we develop our distributed memory based
parallel algorithm using Message Passing Interface (MPI). Both MPI and
OpenMP have been inscribed in our Hybrid Algorithm. At last, in DPLAL,
along with MPI, we use the graph-partitioner METIS [13] to improve graph
partitioning and load balancing.

smarifuz@uno.edu

80 N. S. Sattar and S. Arifuzzaman

4 Methodology

We present our parallel Louvain algorithms below. Note that we omitted some
of the details of these algorithms for brevity. The pseudocode and functional
description of our earlier implementation of shared and distributed memory algo-
rithms can be found in [22].

4.1 Shared Memory Parallel Louvain Algorithm

In shared memory based algorithms, there is a shared address space and mul-
tiple threads share this common address space. This shared address space can
be used efficiently using lock and other synchronization techniques. The main
hindrance behind the shared memory based systems is the limited number of
processing cores. We parallelize the Louvain algorithm by distributing the com-
putational task among multiple threads using Open Multi-Processing (OpenMP)
framework. (See a detailed description of this algorithm in [22].)

4.2 Distributed Memory Parallel Louvain Algorithm

Distributed memory based algorithms can exploit the power of large computing
clusters that are widely available now-a-days. The compute nodes have differ-
ent memory space. Processors exchange messages among themselves to share
information. Such inter-processor communication introduces significant over-
head, which needs to be minimized. Another crucial challenge is balancing load
among processors. We use Message Passing Interface (MPI) for the implementa-
tion of distributed memory based parallel Louvain algorithm. In the first phase,
we partition the entire network among the processors. Each processor gets a part
of the network. In the second phase, each processor complete its computation
independently and does communication with other processors whenever neces-
sary. A particular processor is designated as the root or master. After each level
of iteration, all processors communicate with the root processor to compute the
modularity value of the full network. A detailed functional description of this
approach can be found in [22].

4.3 Hybrid Parallel Louvain Algorithm

We use both MPI and OpenMP together to implement the Hybrid Parallel Lou-
vain Algorithm. The hybrid version gives us the flexibility to balance between
both shared and distributed memory system. We can tune between shared and
distributed memory depending on available resources. In the multi-threading
environment, a single thread works for communication among processors and
other threads do the computation.

smarifuz@uno.edu

Overcoming MPI Communication Overhead 81

4.4 Distributed Parallel Louvain Algorithm with Load-Balancing

To implement DPLAL, we use the similar approach as described in Sect.4.2. In
the first phase, we have used well-known graph-partitioner METIS [19] to parti-
tion our input graph to distribute among the processors. Depending on METIS
output, we adjust the number of processors because METIS does not always
create same number of partitions as provided in input. We use both edge-cut
and communication volume minimization approaches. An empirical comparison
of these approaches is described later in Sect. 6. After partitioning, we distribute
the input graph among the processors. For second phase, we follow the same flow
as described in the Algorithm in [22]. But we have to recompute each function
that has been calculated from input graph. Runtime analysis for each of these
functions being used in MPI communication has been demonstrated in Sect. 6.
Our incorporation of graph partitioning scheme helps minimize the communica-
tion overhead of MPI to a great extent and we get an optimized performance
from DPLAL.

5 Experimental Setup and Dataset

We describe our experimental setup and datasets below. We use large-scale com-
pute cluster for working on large real-world graph datasets.

5.1 Execution Environment

We use Louisiana Optical Network Infrastructure (LONI) QB2 [9] compute clus-
ter to perform all the experiments. QB2 is a 1.5 Petaflop peak performance clus-
ter containing 504 compute nodes with over 10,000 Intel Xeon processing cores
of 2.8 GHz. We use at most 50 computing nodes with 1000 processors for our
experiments.

5.2 Description of Datasets

We have used real-world networks from SNAP [23] depicted in Table 1. We have
performed our experimentation on different types of network including social
networks, internet, peer-to-peer networks, road networks, network with ground
truth communities, and Wikipedia networks. All these networks show different
structural and organizational properties. This gives us an opportunity to assess
the performance of our algorithms for worst case inputs as well. The size of graphs
used in our experiments ranges from several hundred thousands to millions of
edges.

6 Results

We present the scalability and runtime analysis of our algorithms below. We
discuss the trade-offs and challenges alongside.

smarifuz@uno.edu

82 N. S. Sattar and S. Arifuzzaman

Table 1. Datasets used in our experimental evaluation.

Network Vertices | Edges Description

email-Eu-core 1,005 25,571 | Email network from a large
Furopean research institution

ego-Facebook 4,039 88,234 | Social circles (‘friends lists’) from
Facebook

wiki-Vote 7,115 103,689 | Wikipedia who-votes-on-whom
network

p2p-Gnutella08 6,301 20,777 | A sequence of snapshots of the

p2p-Gnutella09 8,114 26,013 | Gnutella peer-to-peer file sharing

p2p-Grutella04 10,876 39,994 network for different dates of

p2p-Grutella25 92,687 54,705 ‘rusust 2002

p2p-Gnutella30 36,682 88,328

p2p-Gnutella31 62,586 | 147,892

soc-Slashdot0922 82,168 | 948,464 | Slashdot social network from
February 2009

com-DBLP 317,080 | 1,049,866 | DBLP collaboration
(co-authorship) network
roadNet-PA 1,088,092 | 1,541,898 | Pennsylvania road network

Speedup Factors of Shared and Distributed Memory Algorithms. We
design both shared and distributed memory based algorithms for Louvain meth-
ods. The speedup results are shown in Fig. la and b. Our shared memory and
distributed memory based algorithms achieve speedups of around 4 and 1.5,
respectively. The number of physical processing core available to our system is
20. Our shared memory algorithm scales well to this many cores. However, due
to the unavailability of large shared memory system, we also design distributed
memory algorithm. Further, shared memory algorithms show a limited scala-
bility to large networks as discussed in [6]. Our distributed memory algorithm
demonstrates only a minimal speedup for 30 processors. The inter-processor com-
munication severely affects the speedup of this algorithm. We strive to overcome
such communication bottleneck by designing hybrid algorithm.

Speedup Factors of Our Hybrid Parallel Algorithm. Our hybrid algo-
rithm tends to find a balance between the above two approaches, shared and
distributed memory. As shown in Fig. 1c, we get a speedup of around 2 for the
hybrid implementation of Louvain algorithm. The speedup is similar to the MPI
implementation. It is evident that in multi-threading environment runtime will
decrease as workload is distributed among the threads. But we observe that
in some cases, both single and multiple threads take similar time. Even some-
times multiple threads take more time than a single thread. It indicates that
hybrid implementation also suffers from the communication overhead problem

smarifuz@uno.edu

Overcoming MPI Communication Overhead 83

"DBLP —e—

p2p-G-31 —m—
Slashdot —e—

0
5 10 15 20 25 30
No. Thread
(a) Shared Memory Algorithm
1.4 T T T T T T r r
DBLP —e—
126 p2p-G-31 —=— ||
' wiki-Vote —6—

Jury

10 20 30 40 50 60 70 80 90 100
No. Processor

(b) Distributed Memory Algorithm

email-Eu-core —@— p2p-G-30 —— Slashdot —<—
wiki-Vote —m— DBLP —A—

0.9 . . .
5 10 15 20 25 30

No. Thread
(c) Hybrid Algorithm

Fig. 1. Speedup factors of our parallel Louvain algorithms for different types of net-
works. Our hybrid algorithm strikes a balance between shared and distributed memory
based algorithms.

smarifuz@uno.edu

84 N. S. Sattar and S. Arifuzzaman

roadNet-PA —o— ||

DBLP —&—
Slashdot —— ||

!

0
100 150 200 250 300 350 400 450 500
No. Processor

(a) Speedup results for large graphs

p2p-G-31 ——

p2p-G-30 —=—

1))) p2p-G-25 ——

20 30 40 50 60 70 80 90 100
No. Processor

(b) Speedup results for relatively small graphs

Fig. 2. Speedup factors of DPLAL algorithm for different types of networks. Larger
networks scale to a larger number of processors.

alike MPI. Communication overhead of distributed memory setting limits the
performance of hybrid algorithm as well.

Speedup Factors of Our Improved Parallel Algorithm DPLAL. Our
final parallel implementation of Louvain algorithm is DPLAL. This algorithm
achieves a speedup factor up-to 12. We reduce the communication overhead in
message passing setting to a great extent by introducing a load balancing scheme
during graph partitioning. The improved speedup for DPLAL is presented in
Fig. 2. For larger networks, our algorithm scales to a larger number of processors.
We are able to use around a thousand processors. For smaller networks, the
algorithm scales to a couple of hundred processors. It is understandable that for
smaller networks, the communication overhead gradually offsets the advantage
obtained from parallel computation. However, since we want to use a larger
number of processors to work on larger networks, our algorithm in fact has this
desirable property. Overall, DPLAL algorithm scales well with the increase in
the number of processors and to large networks.

smarifuz@uno.edu

Overcoming MPI Communication Overhead 85

Runtime Analysis: A Breakdown of Execution Times. We present a
breakdown of executions times. Figure3 shows the runtime analysis for our
largest network RoadNet-PA. We observe that communication time for gather-
ing neighbor information and exchanging duality resolved community decreases
with increasing number of processors. Communication time for both exzchanging
updated community and gathering updated community increases up-to a certain
number of processors and after decreasing, the time becomes almost constant.
Among all these communications, time to gather communities at the root pro-
cessor takes maximum time and contribute to the high runtime.

gathering neighbour info —@—

exchanging updated community
exchanging duality resolved community —e—
gathering updated communities — A -
total duration — > -

100000

1000

Time (ms)

100

10 Il Il Il
100 200 300 400 500 600 700 800 900

No. Processor

Fig. 3. Runtime analysis of RoadNet-PA graph with DPLAL algorithm for varied
number of processors. We show a breakdown of execution times for different modules or
functions in the algorithm. Time for gathering updated communities and total duration
are plotted w.r.t the right y-axis.

Number of Processors Versus Execution Time. For many large networks
that we experimented on (including the ones in Fig. 2a), we find that those can
scale to up to ~800 processors. We call this number as the optimum number of
processors for those networks. This optimum number depends on network size.
As our focus is on larger networks, to find out the relationship between runtime
and network size, we keep the number of processor 800 fixed and run an exper-
iment. As shown in Fig. 4, the communication time for gathering neighbor info
decreases with growing network size whereas both time for gathering updated
communities and exchanging duality resolved community increase. Communi-
cation time for exchanging updated community increases up-to a certain point

smarifuz@uno.edu

86 N. S. Sattar and S. Arifuzzaman

and then starts decreasing afterwards. For larger networks (>8K), total runtime
increases proportionately with growing network size. As smaller graphs do not
scale to 800 processors, these do not follow the trend, but it can be inferred that
these will behave the same way for their optimum number of processors.

gathering neighbour info —e—

exchanging updated community —8—
exchanging duality resolved community —e—
gathering updated communities —A—

total duration —*—

100000 ¢ ‘

10000 |

1000}

Time (ms)

100

10}

100000 1x10°
Network Size

Fig. 4. Increase in runtime of DPLAL algorithm with an increase in the sizes of the
graphs keeping the number of processors fixed.

METIS Partitioning Approaches. We also compare the METIS partitioning
techniques, between edge-cut and communication volume minimization, to find
out the efficient approach for our algorithm. Figure5 shows the runtime com-
parison between edge-cut and communication volume minimization techniques.
We find that the communication volume minimization approach always takes
similar or higher time than that of edge-cut partitioning. So, in our subsequent
experimentation, we have used edge-cut partitioning approach.

7 Performance Analysis

We present a comparative analysis of our algorithms, its sequential version, and
another existing distributed memory algorithm.

7.1 Comparison with Other Parallel Algorithms

We compare the performance of DPLAL with another distributed memory par-
allel implementation of Louvain method given in Wickramaarachchi et al. [27].

smarifuz@uno.edu

Overcoming MPI Communication Overhead 87

Edge-Cut (roadNetwork-PA) —e—
Volume-Minimization (roadNetwork-PA) — & -
Edge-Cut (DBLP) —&—

Volume-Minimization (DBLP) — A~ -

Edge-Cut (Slashdot) —<—
Volume-Minimization (Slashdot) — > -

S % - e--9

(.
100000<h§i‘f?,___8”6_9\e—e——<>

Time (ms)
R

10000 ¢ 1

100 200 300 400 500 600 700 800 900
No. Processor

Fig. 5. Comparison of METIS partitioning approaches (edge-cut versus communication
volume minimization) for several networks. The edge-cut approach achieves better
runtime efficiency for the above real-world networks.

For a network with 500,000 nodes, Wickramaarachchi et al. achieved a max-
imum speedup of 6 whereas with DPLAL for a network with 317,080 nodes
we get a speedup of 12 using 800 processors. The largest network processed by
them has 8M nodes and achieved a speedup of 4. Our largest network achieves a
comparable speedup (4-fold speedup with 1M nodes). The work in [27] did not
report runtime results so we could not compare our runtime with theirs directly.
Their work reported scalability to only 16 processors whereas our algorithm is
able to scale to almost a thousand of processors.

7.2 Comparison with Sequential Algorithm

We have compared our algorithms with the sequential version [7] to analyze
the accuracy of our implementations. Deviation of the number of communities
between sequential and our implementations is represented in Table 2. The devi-
ation is negligible compared to network size. The number of communities is not
constant and they vary because of the randomization introduced in the Louvain
algorithm. Table 2 gives an approximation of the communities.

Although shared memory based parallel Louvain has the least deviation, the
speedup is not remarkable. Whereas, DPLAL shows a moderate deviation but
its speedup is 3 times of that of shared parallel Louvain algorithm.

smarifuz@uno.edu

88 N. S. Sattar and S. Arifuzzaman

Table 2. Deviation of the number of communities for different parallel Louvain Algo-
rithms from the sequential algorithm.

Algorithm | Network

com-DBLP wiki-Vote

Comm. No. | Dev. (%) | Comm. No. | Dev. (%)
Sequential | 109,104 - 1,213 -
Shared 109,102 .0006 1,213 0
Distributed | 109,441 0.106 1,216 0.042
Hybrid 104,668 1.39 1,163 0.71
DPLAL 109,063 0.0129 1,210 0.042

8 Conclusion

Our parallel algorithms for Louvain method demonstrate good speedup on sev-
eral types of real-world graphs. As instance, for DBLP graph with 0.3 million
nodes, we get speedups of around 4, 1.5 and 2 for shared memory, distributed
memory, and hybrid implementations, respectively. Among these three algo-
rithms, shared memory parallel algorithm gives better speedup than others.
However, shared memory system has limited number of physical cores and might
not be able to process very large networks. A large network often requires dis-
tributed processing and each computing node stores and works with a part of
the entire network. As we plan to work with networks with billions of nodes and
edges, we work towards the improvement of the scalability of our algorithms
by reducing the communication overhead. We have identified the problems for
each implementation and come up with an optimized implementation DPLAL.
With our improved algorithm DPLAL, community detection in DBLP network
achieves a 12-fold speedup. Our largest network, roadNetwork-PA has 4-fold
speedup for same number of processors. With increasing network size, number
of processor also increases. We will work with larger networks increasing the
number of processors in our future work. The optimum number of processor
largely depends on the network size. We will also experiment with other load-
balancing schemes to find an efficient load balancing scheme to make DPLAL
more scalable. We also want to eliminate the effect of small communities that
create misconception to understand the community structure and its properties.
Further, we will explore the effect of node ordering (e.g., degree based ordering,
random ordering) on the performance of parallel Louvain algorithms.

smarifuz@uno.edu

Overcoming MPI Communication Overhead 89

Acknowledgements. This work has been partially supported by Louisiana Board of
Regents RCS Grant LEQSF(2017-20)-RDA- 25 and University of New Orleans ORSP
Award CONO000000002410. We also thank the anonymous reviewers for the helpful
comments and suggestions to improve this paper.

References

1.

10.

11.

12.

13.

14.

15.

Arifuzzaman, S., Khan, M.: Fast parallel conversion of edge list to adjacency list
for large-scale graphs. In: 2015 Proceedings of the 23rd Symposium on High Per-
formance Computing, pp. 17-24. Society for Computer Simulation International
(2015)

Arifuzzaman, S., Khan, M., Marathe, M.: PATRIC: a parallel algorithm for count-
ing triangles in massive networks. In: Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management, pp. 529-538. ACM (2013)
Arifuzzaman, S., Khan, M., Marathe, M.: A fast parallel algorithm for counting
triangles in graphs using dynamic load balancing. In: 2015 IEEE International
Conference on Big Data (Big Data), pp. 1839-1847. IEEE (2015)

Arifuzzaman, S., Khan, M., Marathe, M.: A space-efficient parallel algorithm for
counting exact triangles in massive networks. In: 2015 IEEE 17th International
Conference on High Performance Computing and Communications (HPCC), pp.
527-534. IEEE (2015)

Arifuzzaman, S., Pandey, B.: Scalable mining and analysis of protein-protein inter-
action networks. In: 3rd International Conference on Big Data Intelligence and
Computing (DataCom 2017), pp. 1098-1105. IEEE (2017)

Bhowmick, S., Srinivasan, S.: A template for parallelizing the Louvain method for
modularity maximization. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly,
N., Mitra, B. (eds.) Dynamics on and of Complex Networks, vol. 2, pp. 111-124.
Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6729-8_6
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008
(2008)

Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70(6), 066111 (2004)

Documentation—user guides—qb2. http://www.hpc.lsu.edu/docs/guides.php?
system=QB2

Ghosh, S., et al.: Distributed Louvain algorithm for graph community detection. In:
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 885-895. IEEE (2018)

Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Nat. Acad. Sci. 99(12), 7821-7826 (2002)

Halappanavar, M., Lu, H., Kalyanaraman, A., Tumeo, A.: Scalable static and
dynamic community detection using Grappolo. In: 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1-6. IEEE (2017)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. STAM J. Sci. Comput. 20(1), 359-392 (1998)

Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591-600. ACM (2010)

Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative
analysis. Phys. Rev. E 80(5), 056117 (2009)

smarifuz@uno.edu

https://doi.org/10.1007/978-1-4614-6729-8_6
http://www.hpc.lsu.edu/docs/guides.php?system=QB2
http://www.hpc.lsu.edu/docs/guides.php?system=QB2

90

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

N. S. Sattar and S. Arifuzzaman

Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 631-640. ACM (2010)

Lu, H., Halappanavar, M., Kalyanaraman, A.: Parallel heuristics for scalable com-
munity detection. Parallel Comput. 47, 19-37 (2015)

McCalpin, J.D., et al.: Memory bandwidth and machine balance in current high
performance computers. In: 1995 IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pp. 19-25 (1995)

Karypis Lab: METIS - serial graph partitioning and fill-reducing matrix ordering.
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)
Raval, A., Nasre, R., Kumar, V., Vadhiyar, S., Pingali, K., et al.: Dynamic load bal-
ancing strategies for graph applications on GPUs. arXiv preprint arXiv:1711.00231
(2017)

Sattar, N., Arifuzzaman, S.: Parallelizing Louvain algorithm: distributed memory
challenges. In: 2018 IEEE 16th International Conference on Dependable, Auto-
nomic and Secure Computing (DASC 2018), pp. 695-701. IEEE (2018)

Stanford large network dataset collection. https://snap.stanford.edu/data/index.
html

Staudt, C.L., Meyerhenke, H.: Engineering parallel algorithms for community
detection in massive networks. IEEE Trans. Parallel Distrib. Syst. 27(1), 171-184
(2016)

Talukder, N., Zaki, M.J.: Parallel graph mining with dynamic load balancing. In:
2016 IEEE International Conference on Big Data (Big Data), pp. 3352-3359. IEEE
(2016)

Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook
social graph. arXiv preprint arXiv:1111.4503 (2011)

Wickramaarachchi, C., Frincuy, M., Small, P., Prasannay, V.: Fast parallel algo-
rithm for unfolding of communities in large graphs. In: 2014 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1-6. IEEE (2014)

smarifuz@uno.edu

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://arxiv.org/abs/1711.00231
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html
http://arxiv.org/abs/1111.4503

	Preface
	Organization
	Contents
	Scientific Applications
	CORRFUNC: Blazing Fast Correlation Functions with AVX512F SIMD Intrinsics
	1 Introduction
	1.1 Correlation Functions
	1.2 Partitioning the Space into Rmax Cells

	2 Overview of Corrfunc
	2.1 Optimization Design
	2.2 Computing the Minimum Possible Separation
	2.3 Overview of AVX512F
	2.4 AVX512F Kernel Implementation

	3 Results
	3.1 Comparing the Performance with Sub-divided Cells
	3.2 Comparing the Performance with Bounding Box Optimizations
	3.3 Comparing the Performance of the SIMD Kernels

	4 Conclusions
	References

	High Level File System and Parallel I/O Optimization of DNS Code
	1 Introduction
	2 Mathematical Model
	3 Data Set and HPC Systems
	4 Optimization Methodology
	4.1 Lustre Optimization
	4.2 Striping
	4.3 IOBUF Optimizations

	5 Results and Discussions
	5.1 Parallel I/O Optimizations
	5.2 Vectorization
	5.3 NUMA Optimization

	6 Conclusion and Outlook
	References

	Hybrid Parallelization of Particle in Cell Monte Carlo Collision (PIC-MCC) Algorithm for Simulation of Low Temperature Plasmas
	1 Introduction
	2 Computational Model
	3 Hardware and Programming Frameworks
	4 Implementation Details and Code Validation
	4.1 Data Structures
	4.2 Arithmetic Intensity
	4.3 Code Validation and Comparison of Simulations with Experiment

	5 Parallelization Strategy
	5.1 Shared Memory (OpenMP) Parallelization Strategy
	5.2 Hybrid Parallelization Strategy
	5.3 Pseudo-code of Hybrid Parallelization Strategy

	6 Results
	7 Conclusion
	References

	A Review of Dimensionality Reduction in High-Dimensional Data Using Multi-core and Many-core Architecture
	1 Introduction
	2 Dimensionality Reduction
	3 Literature Review
	4 Challenges
	5 Parallel Computing Approaches
	6 Conclusion
	References

	Performance Analysis and Optimization
	Performance Analysis of Computational Neuroscience Software NEURON on Knights Corner Many Core Processors
	Abstract
	1 Introduction
	2 NEURON
	3 Porting and Performance Analysis on KNC
	4 Summary
	Acknowledgement
	References

	Overcoming MPI Communication Overhead for Distributed Community Detection
	1 Introduction
	2 Related Work
	3 Background
	3.1 Louvain Algorithm
	3.2 Computational Model

	4 Methodology
	4.1 Shared Memory Parallel Louvain Algorithm
	4.2 Distributed Memory Parallel Louvain Algorithm
	4.3 Hybrid Parallel Louvain Algorithm
	4.4 Distributed Parallel Louvain Algorithm with Load-Balancing

	5 Experimental Setup and Dataset
	5.1 Execution Environment
	5.2 Description of Datasets

	6 Results
	7 Performance Analysis
	7.1 Comparison with Other Parallel Algorithms
	7.2 Comparison with Sequential Algorithm

	8 Conclusion
	References

	Analyzing IO Usage Patterns of User Jobs to Improve Overall HPC System Efficiency
	Abstract
	1 Introduction
	2 Comet and Data Collection
	3 Data Processing and Storage
	4 Data Analysis
	4.1 Scatter Matrix
	4.2 Analysis of Longer Jobs

	5 Conclusion
	Acknowledgement
	References

	Science Gateways
	Scalable Software Infrastructure for Integrating Supercomputing with Volunteer Computing and Cloud Computing
	1 Introduction
	2 Software and Implementation
	3 Job Submission Workflow
	4 Backend Workflow
	5 Scalability
	6 Challenges and Lessons Learnt
	7 Limitations
	8 Evaluation
	9 Related Work
	10 Future Work
	11 Conclusion
	References

	High-Productivity Tools and Frameworks
	High-Level Approaches for Leveraging Deep-Memory Hierarchies on Modern Supercomputers
	1 Introduction
	2 Related Work
	3 Memory Management and Optimization Workflow
	3.1 Identify Memory Requirements
	3.2 Analyze NUMA Utilization and Fix NUMA Bindings
	3.3 Identify Bandwidth-Critical Data Structures
	3.4 Iterative Code Adaptation for Optimizing Memory Use

	4 Experimental Set up and Results
	4.1 Selected Benchmarks
	4.2 Workflow Implementation
	4.3 Selecting Relevant MCDRAM Configurations
	4.4 Code Adaptation

	5 Conclusions
	References

	Semi-automatic Code Modernization for Optimal Parallel I/O
	1 Introduction
	2 High-Level Overview of IPT and Its Support for Parallel I/O
	3 Code Transformation for Parallel I/O
	4 Types of I/O Patterns Supported by IPT
	4.1 Writing/Reading ASCII Files
	4.2 Writing/Reading 1-D, 2-D Arrays in Binary Files
	4.3 Setting File Stripe Size and Count for the Lustre Filesystem

	5 Demonstrating the MPI I/O Support in IPT
	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	Author Index

