
HyPC-Map: A Hybrid Parallel Community Detection Algorithm Using
Information-Theoretic Approach

Md Abdul M Faysal˚, Shaikh Arifuzzaman˚, Cy Chan:, Maximilian Bremer:, Doru Popovici:, John Shalf:
˚University of New Orleans, :Lawrence Berkeley National Laboratory,

{mfaysal, smarifuz}@uno.edu, {cychan, mb2010, dtpopovici, jshalf}@lbl.gov

Abstract—Community detection has become an important
graph analysis kernel due to the tremendous growth of social
networks and genomics discoveries. Even though there exist
a large number of algorithms in the literature, studies show
that community detection based on an information-theoretic
approach (known as Infomap) delivers better quality solutions
than others. Being inherently sequential, the Infomap algo-
rithm does not scale well for large networks. In this work, we
develop a hybrid parallel approach for community detection
in graphs using Information Theory. We perform extensive
benchmarking and analyze hardware parameters to identify
and address performance bottlenecks. Additionally, we use
cache-optimized data structures to improve cache locality. All
of these optimizations lead to an efficient and scalable commu-
nity detection algorithm, HyPC-Map, which demonstrates a 25-
fold speedup (much higher than the state-of-the-art map-based
techniques) without sacrificing the quality of the solution.

Index Terms—Community Detection; Parallel Algorithms;
Information-Theory; Map Equation; MDL; Graphs;

1. Introduction
Discovering community in graphs (e.g., biological and

social networks) is an important problem in many scientific
domains [1]–[5]. Due to the huge growth of network size,
scalable algorithms are required [6]–[10]. A wide variety of
applications extensively use community discovery–examples
include finding similar proteins, detecting anomalous be-
havior in cyber-security domain, finding critical point/entity
in rumour propagation or infectious disease spreading, and
classifying groups in social and business networks based on
their activities [4], [11], [12].

While the problem of community discovery has a rich
literature [1]–[6], [8], [13]–[17], it has attracted high at-
tention lately because of the tremendous growth of social
(e.g., human contacts, friendship on social media, disease
spreading), biological (e.g., protein interaction, genomics),
and other graph-related applications. The huge volume of
data that needs to be processed necessitates the development
of parallel computational strategies both in homogeneous
and heterogeneous computing platforms. In their studies,
Lancichinetti et al. [11] and Aldecoa et al. [18] identified the
information-theoretic approach of community discovery, i.e.,
Infomap delivers better quality than many other community

detection algorithms. Among those algorithms, Louvain
method [3] has gained a greater amount of attention for
parallelization despite its resolution limit problem [19].
The high-quality solution given by serial Infomap [11]
has motivated us to develop a highly parallel and scalable
implementation of Infomap. Our contributions in this paper
are as follows: (i) We have designed a parallel information-
theoretic community discovery with clever heuristics to tackle
the inherent sequential nature and low scalability of the
algorithm. (ii) Our approach is hybrid, i.e., we combined
both distributed-memory and shared-memory parallelism. It
demonstrates better speedup than relevant literature (e.g., [7],
[16], [20]). (iii) We have performed extensive benchmarking
and analyzed memory subsystems to use cache-optimized
data structures resulting in efficient compute kernels. (iv)
We achieve better speedup than state-of-the-art techniques
without sacrificing the solution quality (less than 2% impact
on modularity and conductance). Our algorithm demonstrates
25ˆ speedup compared to the sequential Infomap by Rosvall
[21].

2. Information-Theoretic Approach for Com-
munity Detection

Rosvall et al. [4] first proposed the approach of discovering
community by using Shanon’s minimum entropy theorem
[22] to compress the information generated by a dynamic
process (random walk) on a network. Lancichinetti et al.
[11] named Rosvall’s approach of community discovery as
Infomap. Rosvall called his devised optimization function as
the map equation (eq. 1).

LpMq “ qñHpQq `
ÿ

miPM

piœHpρ
iq (1)

Equation 1 has two parts, the first part qñHpQq of the
right side of the equation represents the movement of the
random walk between the modules whereas the second part
ř

miPM piœHpρ
iq represents the movement of the random

walk within a module. The term qñ is the probability of the
random walk exiting a module. The term HpQq represents the
average code length of the movements between the modules.
In the second part of the equation, the term piœ stands for the
stay probability (vertex visit probability + exit probability)
of the random walk within module mi. The term Hpρiq is
the average code length within a module. The term ρi is the

probability distribution of the code of module mi. For any
vertex p, the vertex visit rate, i.e., the PageRank [23] pα can
be computed taking teleportation τ into account.

2.1. Sequential Infomap Algorithm

Algorithm 1: Sequential Infomap
Data: A graph GpV,Eq, N Ð |V |
Result: Set of communities M , where |M | ! N

1 mi, ith module
2 qi, exit probability of module mi

3 γ, minimum threshold for code length improvement
4 Lold, code length of previous iteration
5 L, code length of current iteration
6 Initialize vertex visit rate, pvi Ð 1{N
7 Compute ergodic vertex visit rate, pvi by PageRank
8 M Ð t@mi|pvα P miq&pvα R mjq,@vα P V u
9 for i “ 1 to |M | do

10 Calculate exit probability, qi
11 end
12 Initial code length, LÐ LpMq
13 do
14 Lold Ð L
15 for j “ 1 to N do
16 Select randomly each vertex, vj
17 mnew Ð FindBestModulepvjq
18 Compute L cumulatively
19 end
20 CreateSuperNodepMq
21 for j “ 1 to |M | do
22 Select randomly each SuperNode, mj

23 mnew Ð FindBestModulepmjq

24 mj Ð tmnew|@vj P mju

25 Compute L cumulatively
26 end
27 while (Lold ´ Lq ą γ
28 return |M |

Algorithm 1 describes the working procedure of Infomap.
Lines 1 ´ 5 list the notation used inside the algorithm.
Line 6 ´ 7 compute the vertex visit rate (i.e., PageRank)
using the power iteration method. The algorithm begins
with the number of communities equals to the number of
vertices N Ð |V |. M represents the set of the modules,
mi represents a single module/community. Initially, mi has
only one member vertex, but as the algorithm progresses, mi

may get zero or more than one vertex. M consists of all the
modules (line 8). A vertex v can have a single community
membership at a time. Lines 9´ 11 compute the initial exit
probability qi for the module mi. Line 12 calculates initial
code length following equation 1. Lines 13 ´ 27 describe
community discovery procedure continuing for multiple
iterations. Line 14 preserves the current code length at the
beginning of an iteration. Every vertex in the vertex set
V is picked up in a random order in an iteration (lines
15´ 16). Function FindBestModule returns the neighboring
module of a vertex that minimizes the code length most of

all of the neighborhood modules (line 17 ´ 18). Function
CreateSuperNode takes the set of modules M as argument to
create supernode objects consisting of one or more vertices
(line 20). Finding the best module in supernode level is
conducted in lines 21´ 25. This continues until the change
in code length falls below a certain user-defined threshold γ
(line 27). The return value of the algorithm is the number
of discovered communities (line 28).

3. HyPC-Map: Hybrid Parallel Community
Discovery using Infomap

3.1. Overview of the Algorithm
HyPC-Map can be divided into the following majors

steps as per the actual computation sequence: (i) Calculating
the ergodic node visit frequency (PageRank) by OpenMP
parallelism. (ii) Finding best community of its subgraph
in parallel by each MPI process using OpenMP threads.
(iii) Synchronization of the discovered communities for the
subgraph belonging to each MPI process. (iv) Creating
supernodes of its modules by each MPI process using
OpenMP parallelism. (v) Finding best community of its
supernodes in parallel by each MPI process using OpenMP
threads. (vi) Synchronizing the community membership of
the vertices of the supernodes belonging to each MPI process.

Algorithm 2 presents the design of the hybrid memory
parallel Infomap. Lines 1´ 7 list the notations used in the
algorithm. Lines 8 ´ 9 describe calculating PageRank by
power iteration in parallel using t OpenMP threads. Line 10
initializes the set of modules M , where each vertex of V has
its own module at the very beginning. Lines 11´12 calculate
exit probability qi in parallel using t OpenMP threads. Line
14 initializes the code length. Lines 15´37 do the community
discovery in multiple iterations until the change in code
length falls below a certain threshold γ. For each process
p, the corresponding range of vertices is computed (line
17´ 18) in parallel from the list of Active vertices (details
in section 3.3). Metis [24] edge-cut partitioner is used for
workload balance across the processes. Community discovery
for vertices takes place in lines 19 ´ 22 and community
discovery for supernodes takes place in lines 29´33 using t
number of OpenMP threads inside each MPI process by the
help of the function FindBestModule. This function takes
input of a vertex or a supernode and returns the module that
minimizes the code length most. Function CreateSuperNode
in line 26 describes creating supernode objects in parallel
consisting of one or more vertices from the set of modules
M . The synchronization of the community memberships of
the vertices takes place in line 25 and 36. Line 38 returns
the number of communities |M | after algorithm converges.

3.2. Challenges in Distributing Computation/Data
While distributing computation and data among processing

units, our map-based approach demonstrates the following
challenges and problems – (i) Vertex bouncing problem: The
notion behind this problem is when two vertices having
strong affinity are distributed to two different processes,
each of the vertices tries to move to the community of the

Algorithm 2: Hybrid Infomap
Data: A graph GpV,Eq, N Ð |V |
Result: Set of communities M , where |M | ! N

1 mi, ith module
2 qi, exit probability of module mi

3 γ, minimum threshold for code length improvement
4 Lold, code length of previous iteration
5 L, code length of current iteration
6 P , total MPI processes spawned
7 t, total OpenMP threads spawned
8 Initialize vertex visit rate, pvi Ð 1{N
9 Compute ergodic vertex visit rate, pvi by PageRank

in t´ way parallel
10 M Ð t@mi|pvα P miq&pvα R mjq,@vα P V u
11 for mi “ 1 to |M | in t´ way parallel do
12 Calculate exit probability, qi
13 end
14 Initial code length, LÐ LpMq
15 do
16 Lold Ð L
17 for process p = 1 to P in parallel do
18 Compute vertex indices range rvstart, vends

from Active vertices list
19 for j “ rvstart, vends, t´ way parallel do
20 Select randomly each vertex, vj
21 mnew Ð FindBestModulepvjq
22 Compute L cumulatively
23 end
24 end
25 Synchronize mnew P M across P
26 CreateSuperNodepMq in t´ way parallel
27 for process p = 1 to P in parallel do
28 Compute SuperNode indices rmstart,mends

from Active SuperNodes list
29 for j “ rmstart,mends, t´way parallel do
30 Select randomly each SuperNode, mj

31 mnew Ð FindBestModulepmjq

32 mj Ð tmnew|@vj P mju

33 Compute L cumulatively
34 end
35 end
36 Synchronize mnew P M across P
37 while (Lold ´ Lq ą γ
38 return |M |

other vertex. This causes a non-converging oscillation of the
vertices. (ii) Inconsistent update ordering: We consider a
synchronous parallel approach. Maintaining uniformity of
community assignment during synchronization is challenging.
This happens because of different synchronization orders
by different processes. Consequently, a vertex may have
inconsistent modular state across different MPI processes
affecting the solution quality. (iii) Inactive vertices: In the
initial few iterations, most of the vertices change communities
and find their stable place (community). Those vertices
become inactive for the later iterations. Fewer and fewer

vertices remain active to continue changing communities
in subsequent iterations until convergence. This observation
leads us to the conclusion that in every iteration, considering
all of the vertices in the network for community update incurs
redundant computation and wastes computational resources.
All these issues are discussed in detail in [20].

3.3. Solution Strategies: Our Heuristics
Solution to Vertex Bouncing Problem: To prevent the

issue arising from vertex bouncing problem, we adopted
numeric ordering of the community/module id of each vertex
during the synchronization step (lines 25 and 36 of algorithm
2). To understand how it works, suppose, vertex u moves to
the community of vertex v, i.e., u Ñ v in process P1 and
the opposite move, i.e., v Ñ u happens in process P2. The
way we take the final decision of accepting and discarding
a move is to first check the numeric values of the current
community ids of the vertices u and v. Then, select the move
from lower id community to higher id community.

Solution to Inconsistent Update Ordering: For maintain-
ing uniform community assignment for vertices distributed
across all of the processes, we have taken the heuristic of
priority-based community assignment during synchronization
phase (lines 25 and 36 of algorithm 2). In this scheme,
the decision to community assignment for a specific vertex
is taken and broadcast by the owner process of a vertex.
All other processes will honor the community assignment
information received irrespective of their own information
regarding that vertex.

Solution to Inactive Vertices Problem: There is no
deterministic way to decide which vertices will be active or
which vertices will be inactive in the immediate next iteration.
It is empirically observed that the vertices that change
their communities in an iteration will likely change their
communities in the immediate next iteration. Additionally,
the neighbors of those vertices may become active too. A
list is maintained for those active vertices (lines 18 and 28
of algorithm 2).

4. Experimental Settings & Evaluations
We have implemented our algorithm using C++ pro-

gramming language, MPI, and OpenMP frameworks. We
have evaluated our algorithm based on the quality of the
discovered community and the scalability of our parallel
implementation. We compare the results to other information-
theoretic approaches as well as HipMCL [8] (a parallel
implementation of Markov Clustering algorithm).

Computational Infrastructure: We have run our experi-
ments on the Cori supercomputer owned by National Energy
Research Scientific Computing Center (NERSC) and LONI
QB2 [25] compute cluster.

4.1. Optimizing Computational Kernels
The major compute kernels of HyPC-Map without multi-

threading and cache-optimization are illustrated in figure 1
with the percentage of their run time for different networks.
It is evident that FindBestModule kernel is the most time-
consuming part of the algorithm. It takes as much as 89% of

TABLE 1: Performance micro-benchmark of insertion and
read operations between c++ map vs unordered map

Number of Insertion Insertion Read Read
entries map (µs) unordered map (µs) unordered

map (µs) map (µs)

2048 1904 1284 70 58
4096 3991 2586 110 123
8192 8499 5139 230 239
16384 16927 9764 462 465
32768 34916 19197 887 902
65536 75827 37914 1689 1810
131072 166398 76855 3936 3608

the execution time (Orkut network). This kernel having other
necessary computations, extensively uses C++ STL map (key-
value) which is a major contributor to the execution time.
From our micro-benchmark analysis listed in table 1, we see
a significant difference in insertion performance between the
RB tree-based STL map and the hash table (cache-friendly
if hash function is good) based STL unordered map that
avoids expensive tree-traversal during insertion operation.
This change resulted in a performance improvement for the
FindBestModule kernel from 1095 seconds to 1030 seconds
(Orkut network). OpenMP multithreading leads to significant
optimization of this kernel as evident from figure 2. The
execution time further reduces to 240 seconds by using 10
OpenMP threads per MPI process.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Orkut LiveJournal Pokec Youtube

T
im

e
(%

)

Network

PageRank
CreateSuperNode
UpdateMembers

Others
FindBestModule

Figure 1: The percentage (%) breakdown of run time for the
unoptimized operational kernels of the distributed-memory
HyPC-Map. FindBestModule kernel consumes major portion
of the execution time.

 10

 200

 400

 600

 800

 1000

Orkut LiveJournal Pokec Youtube

T
im

e
(s

ec
)

Network

FindBestModule (map)
FindBestModule (unordered_map)
FindBestModule (multithreading)

1094

308
266

55

1031

251 234

37

240

64 54
10

Figure 2: Runtime improvement of FindBestModule by using
cache-friendly data structures (STL unordered map) and
OpenMP multi-threading (10 threads per MPI process)

4.2. Quality Assessment of the Community
We have used the metrics Modularity, Conductance, and

convergence MDL for comparing the quality of the detected
communities against [26].

Convergence of the Objective Function: The objective
function (eq. 1) of Infomap minimizes the MDL. In dis-
tributed implementation, there is a possibility of premature
convergence as observed by [7]. The outcome we achieved
by optimizing the objective function is very close to the
MDL found in [26]. In figure 3a, we have shown the final
MDL value after convergence. The difference in MDL is
very insignificant in all cases with a minimum difference of
0.08% (Amazon) to a maximum of 3% (Wiki-topcats).

Modularity: We observe from figure 3b, the values of
modularity vary insignificantly for the network datasets of
our experiments. We see no change in modularity for a
different number of cores for the DBLP network and the
LiveJournal network, and less than 2% of the difference for
1280 cores for the Orkut network.

Conductance: We observe no difference in conductance
between 1 core and 1280 cores executions for the DBLP
network and the LiveJournal network from figure 3c. For the
Orkut network, the conductance value is different by less
than 2% for 1280 cores.

Normalized Mutual Information (NMI): NMI can be
used to measure the scalability in terms of quality for a
different number of processing cores. In table 3, we report
the consistency of the quality for different number of cores
using synthetic networks with a known truth partition. Since
NMI requires a known truth partition, we used static synthetic
graphs from MIT GraphChallenge network datasets [27].

4.3. Parallel Performance
Speedup Gain: In table 4, we show the speedup of our

implementation against the original Infomap [4] in column
3 and against the sequential HyPC-Map in column 2. The
parallel experiments are conducted using up to 64 compute
nodes of the QB2 [28] server, each node running 2 MPI
processes and each MPI process spawning 10 OpenMP
threads (1 thread per core). To the best of our knowledge, our
parallel implementation obtained significantly better speedup
than state-of-the-art information-theoretic approaches [16],
[29]. Moreover, we have higher speedup for larger networks
than the smaller ones. For larger networks such as Wiki-
topcats, Soc-pokec and Orkut, the speedup gain is 10.52,
12.52, and 16.16 respectively against the sequential HyPC-
Map (2nd column). We observe even higher speedup, reaching
as high as „ 25ˆ for the LiveJournal network and „ 21.4ˆ
for the Orkut network against the original Infomap shown in
column 3. This demonstrates the benefit of using optimized
data structures and efficient compute kernels.

Scalability Analysis: Figure 4 illustrates the run time
comparison of our implementation for 3 large networks.
For the Orkut network, the run time of 2836 seconds for a
single core reduces to 176 seconds for 1280 cores. For the
LiveJournal network, the run time reduces to 104.7 seconds
from 840 seconds.

Comparison with State-of-the-Art Techniques: We

 0

 3

 6

 9

 12

 16

 20

 24

Amazon DBLP Youtube Pokec Wiki-top LiveJournal Orkut

M
in

im
u
m

 D
es

cr
ip

ti
on

 L
en

g
th

Networks

Number of core = 1
Number of cores = 1280

12.612.6
13.613.6

17.517.5 16.816.9
15.916.3 16.916.9 16.817.0

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Amazon DBLP Youtube Pokec Wiki-top LiveJournal Orkut

M
od

u
la

ri
ty

Networks

Number of core = 1
Number of cores = 1280

0.770.77

0.590.59

0.400.40
0.340.32

0.400.38

0.470.47
0.420.41

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Amazon DBLP Youtube Pokec Wiki-top LiveJournal Orkut

C
on

d
u
ct

an
ce

Networks

Number of core = 1
Number of cores = 1280

0.230.23

0.410.41

0.580.57

0.660.68

0.580.60
0.530.53 0.550.55

(c)
Figure 3: Illustration of the quality of the discovered communities in terms of (a) MDL, (b) Modularity, and (c) Conductance.
The value of the quality metrics are displayed on top of the histogram bars for the respective number of processing core(s)
and network configurations

TABLE 2: Scalability of HyPC-Map in terms of the quality metrics: Modularity and Conductance

Modularity Conduct.
Network 1 20 40 80 160 320 640 1280 1 20 40 80 160 320 640 1280

Amazon 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
DBLP 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
LiveJournal 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Orkut 0.42 0.38 0.40 0.40 0.42 0.42 0.41 0.41 0.55 0.51 0.55 0.55 0.54 0.56 0.54 0.56

TABLE 3: Scalability of HyPC-Map in terms of Normalized Mutual Information (NMI) for a different number of cores

NMI
Network # Vertices # Edges 1 20 40 80 160 320 640 1280

SG 50000 50000 1011755 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
SG 500000 500000 10160671 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.88
SG 2000000 2000000 40670978 0.84 0.84 0.84 0.85 0.86 0.85 0.87 0.87

TABLE 4: Speedup comparison with original Infomap [21]
by Rosvall et al. [4] (column 3), and with sequential HyPC-
Map (column 2) on various social and information networks.

Network Speedup Speedup
(vs sequential HyPC-Map) (vs original Infomap)

Amazon 2.78 8.79
DBLP 3.66 7.00
Youtube 4.58 9.43
LiveJournal 8.19 25.11
Wiki-topcats 10.52 16.06
Soc-pokec 12.52 20.67
Orkut 16.16 21.42

 100

.5k

1k

1.5k

2k

2.5k

3k

 1 2 4 8 16 32 64 128 256 .5k 1k 1.6k

E
xe

cu
ti
on

 T
im

e
(s

ec
)

Number of cores

Pokec
LiveJournal

Orkut

Figure 4: Illustrating the scalability and reduction in ex-
ecution time with 3 different networks. For instance, the
execution time reduces for Orkut network from 2836 seconds
to 176 seconds using 1280 cores.

compared HyPC-Map with state-of-the-art techniques in
table 5 and listed the strengths and the weaknesses of the
state-of-the-arts. Despite using 4096 processing units, the
maximum speedup reported for Distributed Infomap [16],
[29] is 6.02ˆ. The implementation is not publicly available.
Therefore, we compared HyPC-Map with GossipMap. We
ran the experiments in our local computing server due to a
large number of dependencies for GossipMap. Figures 5a and
5b show run time comparison for 2 sample networks among
GossipMap, single-threaded distributed HyPC-Map and multi-
threaded distributed HyPC-Map. The single core run times
are 730 seconds and 6734 seconds respectively for HyPC-
Map and GossipMap for the LiveJournal network. HyPC-
Map demonstrates higher relative parallel efficiency (εr)
than GossipMap as shown in figure 5c. Here, εr “

p1T pp1q

p2T pp2q
,

where T pp1q and T pp2q are the execution times for p1 and
p2 parallel units respectively.

Comparison with another Community Discovery Strat-
egy: HipMCL [8] is a parallel community discovery algo-
rithm based on the Markov Clustering technique (MCL) [15].
HipMCL does not perform well for scale-free networks. As
observed in table 6, HyPC-Map outperforms HipMCL in
memory requirement and run time performance for scale-
free networks following power-law degree distribution. The
large networks of our experiments could not be processed by
HipMCL using 128 GB memory of the NERSC Cori haswell
node as memory limit exceeded (MLE) due to the storage
of intermediate results generated during the computation.

TABLE 5: Comparison of HyPC-Map with state-of-the-art techniques

Work Name Type Strength Weakness

Infomap [4] Sequential High accuracy Computationally expensive
RelaxMap [26] Shared-memory parallelism High accuracy Scalability limited to single node
Gossipmap [7] Asynchronous distributed-memory parallelism Asynchronous Scalability up to 128 parallel units
Distributed Infomap [20] Synchronous distributed-memory parallelism Scales to 512 processors Speedup up to „ 5X
Distributed Infomap [29] Synchronous distributed-memory parallelism Scales to „ 4k processors Speedup up to „ 6X
HyPC-Map Synchronous hybrid memory parallelism High accuracy & speedup

 100
 800
1.5k

2.5k

3.5k

4.5k

5.5k

6.5k

 1 2 4 8 16 32

E
xe

cu
ti
on

 T
im

e
(s

ec
)

No. of Processors

LiveJournal network

Distributed HyPC-Map
Hybrid HyPC-Map

GossipMap

(a)

 100
 600

1.5k

2.5k

3.5k

4.5k

5.5k

 1 2 4 8 16 32

E
xe

cu
ti
on

 T
im

e
(s

ec
)

No. of Processors

Wiki-topcat network

Distributed HyPC-Map
Hybrid HyPC-Map

GossipMap

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

LiveJournal Wiki-top

R
e
la

ti
ve

 P
a
ra

lle
l
E
ff

ic
ie

n
cy

Networks

Efficiency (GossipMap)
Efficiency (Hybrid-Infomap)

0.52

0.66

0.54
0.62

(c)
Figure 5: Run time and relative efficiency εr comparison for different networks between GossipMap and HyPC-Map

TABLE 6: Execution performance comparison between HipMCL [8] and HyPC-Map. MLE: Memory Limit Exceeded

HyPC-Map (sec) HipMCL (sec)
Network 1 Compute Node 1 Compute Node 4 Compute Nodes 16 Compute Nodes

Amazon 3.50 85.18 50.61 20.24
DBLP 3.90 278.64 166.42 57.35
Youtube 21.14 MLE 9251.05 2545.89
soc-Pokec 82.05 MLE 37014.52 10792.05
Orkut 235.0 MLE MLE 35715.63

Additionally, HipMCl takes a substantially large amount of
time to process real-world scale-free networks.

5. Related Work
Several parallel implementations exist for the modularity-

based community detection. OpenMP implementations such
as [30] by Bhowmick et al. and [31] by Bader et al.
are available. Hiroaki et al. [32] and Zhang et al. [33]
demonstrated a fast modularity-based community detection
by avoiding searching all the vertices in each iteration.
GPU-based parallel Louvain are presented in the studies
of Cheong et al. [34] and Naim et al. [35]. A combination
of the Louvain algorithm and the breadth-first search (BFS)
is used by Staudt et al. [36], [37] for distributed-memory
parallelization. Zeng et al. [38] designed parallel Louvain
with workload balancing. The works by Sattar et al. [39]
and Sayan et al. [40] demonstrated a distributed`shared
memory (MPI ` OpenMP) based work on the Louvain
algorithm. The work by Peixoto et al. [41] and [17] are
shared-memory based parallel implementation of statistical
inference method. Distributed memory-based parallel works
are done by Uppal et al. [42], [43]. There is less effort
in developing parallel algorithms for Information-theoretic
approach. Bae et al. [26] developed an OpenMP-based
algorithm and a distributed memory algorithm [7] using the
graphlab framework [44]. The distributed memory parallel
work by Faysal et al. [20] shows scalability of up to 512
MPI processes. The works by Zeng et al. [16], [29] on

distributed memory parallel implementation show limited
speedup despite using thousands of processors. The work
we present in this paper addresses the parallelization scheme
for high scalability while maintaining accuracy as good as
the sequential Infomap algorithm.

6. Conclusions
HyPC-Map integrates the benefits of both distributed-

and shared-memory parallelism to achieve higher scalability
performance than state-of-the-art techniques. Additionally,
our algorithm is more efficient while using a single pro-
cessing unit than other prominent map-based algorithms
[7], [21]. HyPC-Map achieves significantly higher parallel
performance than other map-based parallel algorithms in
literature. While achieving such speedup, HyPC-Map does
not fall short in maintaining the quality. The modularity,
conductance, and MDL scores demonstrate high quality
of detected communities, which are desirably similar to
sequential Infomap. We believe HyPC-Map may prove useful
in analyzing emerging large-scale social, information and
scientific networks.

Acknowledgment
This work has been partially supported by US Department

of Energy/Berkeley Lab/University of California Subcontract
Award # 7551418 (Prime Award # DE-AC02-05CH11231)
and Louisiana Board of Regents RCS Grant LEQSF(2017-
20)-RDA-25.

References
[1] M. Girvan and M. E. J. Newman, “Community structure in social

and biological networks,” Proceedings of the National Academy of
Sciences, vol. 99, no. 12, pp. 7821–7826, 2002. [Online]. Available:
https://www.pnas.org/content/99/12/7821

[2] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical Review E, vol. 74, no. 3, Sep 2006.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevE.74.036104

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008,
Oct 2008. [Online]. Available: http://dx.doi.org/10.1088/1742-5468/
2008/10/P10008

[4] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008. [Online].
Available: https://www.pnas.org/content/105/4/1118

[5] M. E. J. Newman, “Spectral methods for community detection and
graph partitioning,” Physical Review E, vol. 88, no. 4, Oct 2013.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevE.88.042822

[6] T. P. Peixoto, “Efficient monte carlo and greedy heuristic
for the inference of stochastic block models,” Phys. Rev.
E, vol. 89, p. 012804, Jan 2014. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevE.89.012804

[7] S.-H. Bae and B. Howe, “Gossipmap: a distributed community
detection algorithm for billion-edge directed graphs,” in SC ’15:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2015, pp. 1–12.

[8] A. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and
A. Buluç, “HipMCL: a high-performance parallel implementation of
the Markov clustering algorithm for large-scale networks,” Nucleic
Acids Research, vol. 46, no. 6, pp. e33–e33, 01 2018. [Online].
Available: https://doi.org/10.1093/nar/gkx1313

[9] S. Zhou, K. Lakhotia, S. G. Singapura, H. Zeng, R. Kannan,
V. K. Prasanna, J. Fox, E. Kim, O. Green, and D. A.
Bader, “Design and implementation of parallel pagerank on
multicore platforms,” in The 21st Annual IEEE High Performance
Extreme Computing Conference, HPEC 2017, Waltham, MA, USA,
September 12-14, 2017. IEEE Computer Society, 2017, pp. 1–6,
graph Challenge Student Innovation Award. [Online]. Available:
https://doi.org/10.1109/HPEC.2017.8091048

[10] S. Arifuzzaman, M. Khan, and M. Marathe, “Fast parallel algorithms
for counting and listing triangles in big graphs,” ACM Trans.
Knowl. Discov. Data, vol. 14, no. 1, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3365676

[11] A. Lancichinetti and S. Fortunato, “Community detection algorithms:
A comparative analysis,” Phys. Rev. E, vol. 80, p. 056117, Nov
2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
80.056117

[12] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining Social-Network
Graphs, 2nd ed. Cambridge University Press, 2014, p. 325–383.

[13] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev. E,
vol. 70, p. 066111, Dec 2004. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevE.70.066111

[14] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Phys. Rev. E, vol. 83, p.
016107, Jan 2011. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevE.83.016107

[15] S. M. Van Dongen, “Graph clustering by flow simulation,” Ph.D.
dissertation, University of Utrecht, 2000.

[16] J. Zeng and H. Yu, “Effectively unified optimization for large-scale
graph community detection,” in 2019 IEEE International Conference
on Big Data (Big Data). IEEE, 2019, pp. 475–482.

[17] M. A. M. Faysal and S. Arifuzzaman, “Fast stochastic block partition-
ing using a single commodity machine,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 3632–3639.

[18] R. Aldecoa and I. Marı̀n, “Exploring the limits of community
detection strategies in complex networks,” Scientific Reports, vol. 3, p.
2216, Jul 2013. [Online]. Available: https://doi.org/10.1038/srep02216

[19] S. Fortunato and M. Barthélemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences,
vol. 104, no. 1, pp. 36–41, 2007. [Online]. Available: https:
//www.pnas.org/content/104/1/36

[20] M. A. M. Faysal and S. Arifuzzaman, “Distributed community
detection in large networks using an information-theoretic approach,”
in 2019 IEEE International Conference on Big Data (Big Data), 2019,
pp. 4773–4782.

[21] M. Rosvall and C. T. Bergstrom, “Source code of the original infomap.”
[Online]. Available: https://www.mapequation.org/code old.html

[22] C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.
1948.tb01338.x

[23] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Comput. Netw. ISDN Syst., vol. 30,
no. 1-7, pp. 107–117, APR 1998. [Online]. Available: http:
//dx.doi.org/10.1016/S0169-7552(98)00110-X

[24] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, Dec. 1998. [Online]. Available:
http://dx.doi.org/10.1137/S1064827595287997

[25] “Louisiana optical network infrastructure.” [Online]. Available:
http://hpc.loni.org/resources/hpc/system.php?system=QB2

[26] S.-H. Bae, D. Halperin, J. West, M. Rosvall, and B. Howe, “Scalable
flow-based community detection for large-scale network analysis,” in
2013 IEEE 13th International Conference on Data Mining Workshops,
Dec 2013, pp. 303–310.

[27] . S. P. C. D. with Known Truth Partitions, “Mit graphchallenge data
sets.” [Online]. Available: https://graphchallenge.mit.edu/data-sets

[28] L. HPC, “Qb2 cluster.” [Online]. Available: http://www.hpc.lsu.edu/
docs/guides.php?system=QB2

[29] J. Zeng and H. Yu, “A distributed infomap algorithm for scalable
and high-quality community detection,” in Proceedings of the 47th
International Conference on Parallel Processing, ser. ICPP 2018.
New York, NY, USA: ACM, 2018, pp. 4:1–4:11. [Online]. Available:
http://doi.acm.org/10.1145/3225058.3225137

[30] S. Bhowmick and S. Srinivasan, A Template for Parallelizing
the Louvain Method for Modularity Maximization. New York,
NY: Springer New York, 2013, pp. 111–124. [Online]. Available:
https://doi.org/10.1007/978-1-4614-6729-8z 6

[31] D. A. Bader and K. Madduri, “Snap, small-world network
analysis and partitioning: An open-source parallel graph framework
for the exploration of large-scale networks,” in 22nd IEEE
International Symposium on Parallel and Distributed Processing,
IPDPS 2008, Miami, Florida USA, April 14-18, 2008. IEEE
Computer Society, 2008, pp. 1–12. [Online]. Available: https:
//doi.org/10.1109/IPDPS.2008.4536261

[32] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast algorithm for
modularity-based graph clustering,” in Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, ser. AAAI’13.
AAAI Press, 2013, p. 1170–1176.

[33] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritizing iterative computations,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 9, pp. 1884–1893,
Sep. 2013.

[34] C. Y. Cheong, H. P. Huynh, D. Lo, and R. S. M. Goh, “Hierarchical
parallel algorithm for modularity-based community detection using
gpus,” in Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and
D. an Mey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 775–787.

[35] M. Naim, F. Manne, M. Halappanavar, and A. Tumeo, “Community
detection on the gpu,” in 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2017, pp. 625–634.

[36] C. L. Staudt and H. Meyerhenke, “Engineering high-performance
community detection heuristics for massive graphs,” in 2013 42nd

International Conference on Parallel Processing, Oct 2013, pp. 180–
189.

[37] ——, “Engineering parallel algorithms for community detection in
massive networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 1, pp. 171–184, Jan 2016.

[38] J. Zeng and H. Yu, “Parallel modularity-based community detection
on large-scale graphs,” in 2015 IEEE International Conference on
Cluster Computing, Sep. 2015, pp. 1–10.

[39] N. S. Sattar and S. Arifuzzaman, “Parallelizing louvain
algorithm: Distributed memory challenges,” in 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure
Computing (DASC 2018), Athens, Greece, August 12-

15, 2018, 2018, pp. 695–701. [Online]. Available: https:
//doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122

[40] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarrià-Miranda, A. Khan, and A. Gebremedhin, “Distributed
louvain algorithm for graph community detection,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2018, pp. 885–895.

[41] T. Peixoto, “graph-tool.” [Online]. Available: https://graph-tool.
skewed.de/

[42] A. J. Uppal and H. H. Huang, “Fast stochastic block partition for
streaming graphs,” 2018 IEEE High Performance extreme Computing
Conference (HPEC), pp. 1–6, 2018.

[43] A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic
block partition,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC), Sep. 2017, pp. 1–5.

[44] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endow.,
vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online]. Available:
https://doi.org/10.14778/2212351.2212354

