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Abstract. Real-world data from diverse domains require real-time scalable anal-
ysis. Large-scale data processing frameworks or engines such as Hadoop fall
short when results are needed on-the-fly. Apache Spark’s streaming library is
increasingly becoming a popular choice as it can stream and analyze a signif-
icant amount of data. In this paper, we analyze large-scale geo-temporal data
collected from the USGODAE (United States Global Ocean Data Assimilation
Experiment) data catalog, and showcase and assess the dependability of Spark
stream processing. We measure the latency of streaming and monitor scalability
by adding and removing nodes in the middle of a streaming job. We also verify
the fault tolerance by stopping nodes in the middle of a job and making sure that
the job is rescheduled and completed on other nodes. We design a full-stack appli-
cation that automates data collection, data processing and visualizing the results.
We also use Google Maps API to visualize results by color coding the world map
with values from various analytics.

Keywords: Parallel performance · Fault tolerance · Streaming analytics ·
Apache spark · Hadoop · Temporal data · Large-scale system

1 Introduction

Processing and analyzing data in real time can be a challenge because of its size. In
the current age of technology, data is produced and continuously recorded by a wide
range of sources [3,4]. According to a marketing paper published by IBM in 2017, as
of 2012, 2.5 quintillion bytes of data was generated every day, and 90% of the world’s
data was created since 2010 [22]. With new satellites, sensors, and websites coming
into existence every day, data is only bound to grow exponentially. The number of users
interacting with theses mediums are producing data at an enormous rate [1,2,15]. With
the Internet reaching to new nooks and corners of the world, sources of potential data are
ever-growing. As more data keep coming into existence, the necessity of a system that
can analyze it in real-time becomes even more imminent. Although the concept of batch
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processing (using multiple commodity machines in a truly distributed setting [18]) was
a revolution when it first came into existence, it might not be a complete solution to the
need for real-time processing. Such on-the-fly processing has applications in many areas
such as banking, marketing, and social media. For example, identifying and blocking
fraudulent banking transactions require quick actions by processing vast amounts of
data and producing quick results. Sensitive and illegal posts on social media can be
quickly removed to nullify the adverse effects on its users. Weather data, like the one
used in this research, can be analyzed in real time to detect or predict different climatic
conditions.

2 Background

The notion of using commodity machines as a computational power came into existence
with the advent of Google File System (GFS). It introduced a distributed file system
that excelled in performance, scalability, reliability, and availability [9]. As this truly
distributed and replicated file system became rigidly stable, the next step in the ladder
was to be able to process the data stored in it. For this, Google introduced MapReduce
as a programming model [7]. This new parallel programming model demonstrated the
ability to write small programs (map and reduce classes) for processing big data. It
introduced the concept of offloading computation to the data itself and thus nullifying
the effect of network bottleneck on batch processing by not having to move the input
data between nodes. Hadoop is the most popular MapReduce framework today, but
it has its limitations. The most prominent shortcoming of Hadoop lies in the iterative
data-processing [23]. To extend Hadoop beyond conventional batch processing requires
various third-party libraries. Storm can be used along with Hadoop to accomplish real-
time processing [10]. Other libraries such as Hive, Giraph, HBase, Flume, and Scalding
are designed to tackle specific operations, e.g., querying and graphing. Managing these
different libraries can be time-consuming from a development point of view.

With Hadoop’s limitations in mind, another large-scale framework Spark was
designed that would reuse a working set of data across multiple operations [23]. The
more iterative a computation is, the more efficient is the job running on Apache Spark.
Spark streaming library has become widely popular to run real-time processing jobs.
This library allows applications to stream data from different sources [14]. Some of the
most popular streaming sources include Kafka, Flume, Twitter, and HDFS. Data can
be streamed into the streaming job from one or more sources and unified into a single
stream. For the application designed for this paper, data is streamed from the Hadoop
File System (HDFS).

3 Apache Spark

Introduced in a paper published in 2010, Spark is a cluster computing framework that
uses a read only collection of objects called Resilient Distributed Datasets (RDDs)
that let users perform in-memory calculations on large clusters [24]. RDDs are fault-
tolerant, parallel data structures which makes it possible to explicitly persist intermedi-
ate results in memory, control their partitioning to optimize data placement, and manip-
ulate them using a rich set of operators [24]. As the intermediate results are stored



Assessing the Dependability of Apache Spark System 133

in memory, iterative analytics such as PageRank calculation, k-means clustering, and
linear regression become much more efficient in Spark compared to Hadoop [10].

3.1 Resilient Distributed Data (RDD)

RDD is defined as a collection of elements partitioned across different nodes in a cluster
that can be operated on in parallel [24]. From a user’s point of view, it looks like a
data structure, but behind the scenes, it performs all the operations necessary to run in
a distributed framework. Failures across large clusters are inevitable; thus, the RDDs
in Spark were designed with fault tolerance in mind. Since most of the operations in
Spark are lazy (no operations are run on data unless an action, e.g., collect, reduce,
etc., is called), the operations on RDDs are stored in the form of a Directed Acyclic
Graph (DAG). A DAG is a collection of functional lineage such as map and filter. Such
awareness of the functional lineage makes it possible for Spark to handle node failures
gracefully [24]. These RDDs drive the streaming framework in Apache Spark. They
have the following properties that make sure the Apache Spark Streaming maintains its
integrity:

Replicated. RDDs are split between various data nodes in a cluster. Replicas are also
spread across the cluster to make sure that the system can recover from any aftermath
of the node crash. Processing occurs on nodes in parallel, and all RDDs are stored in
memory on each node.

Immutable. When an operation is performed on an RDD, the original RDD is not
changed. Instead, a new RDD is created out of that operation [24]. Only two opera-
tions are performed on an RDD namely transformation and action. A transformation
transforms the RDD into a new one whereas an action gets data from the RDD.

Resilient. Resiliency pertains to the replication of data and storing the lineage of oper-
ation on RDDs. When a worker node crashes, the state of the RDD can be regenerated
by running the same set of transformations to reach the current state of the RDD [24].

3.2 Apache Spark Streaming

In many real-world applications, time-sensitive data can often get stale very quickly.
Thus, to make the most of such data, it must be analyzed on time. For example, if
a banking website starts generating piles of 500 errors, the potential of an incoming
request crashing the server must be evaluated in real time. Traditional MapReduce is
not a viable solution for such cases as it is mostly suited for offline batch processing
where results are not associated with any latency [23]. If the input data is repeatedly
produced in discrete sets, multiple passes of the map and reduce tasks would create
overhead which can be eliminated by using Spark instead. Apache Spark Streaming
lets the program store results in an intermediate format in memory, and when new data
arrives as another discrete set, it is batched to perform transformations on them quickly
and efficiently [23]. Figure 1 outlines the Apache streaming framework.

Data can be streamed into Apache Spark streaming framework from various sources
like Kafka, Flume, Twitter, and HDFS [17]. A receiver must be instantiated and hooked
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Fig. 1. Outline of Apache streaming framework used in this paper.

up with the streaming source to start the flow of data. One receiver can only stream
data from one input source, and if we have multiple stream sources, then we can union
them so that they can be processed as a single stream [12]. Once the receiver starts
receiving the data from the streaming source, Spark stores the data into a series of
RDDs delineated by a specified time window. After this time, the data is passed into the
spark core for processing. To start any Spark streaming job, there needs to be at least
two cores, one that receives the data as stream and one that processes the data.

4 Streaming Analytics on Large-Scale Ocean Data

We develop an application to run queries on a large oceanographic dataset and produce
results on the fly. Apache Spark is chosen for a platform to write the application because
of its streaming library. We stream data into the streaming job from HDFS.We collected
data from United States Global Ocean Data Assimilation Experiment (USGODAE) data
catalog and then processed and stored in the HDFS. The application streams new data
within the configurable window of time and run transformations and actions to generate
results.

4.1 Setup and Configuration

Although Hadoop is not required to run Spark, we installed it because our application
reads data from HDFS. Hadoop was first installed on a single node setting, and then
other nodes were added one at a time. Each time a node was added, the sample MapRe-
duce tasks were run to make sure that the job was making use of all the nodes. Five
nodes with identical computational power were used to create the cluster.

We install Apache Spark along with SBT and Scala. SBT is used to build the Scala
projects. Scala is used as the programming language of choice to write streaming jobs.
We install Spark in the same way as Hadoop by starting with a single node and adding
one node at a time. Two workers instances (SPARK WORKER INSTANCES= 2)
ran on each terminal to utilize dual CPUs. Each worker is set up to utilize
up to 15GB memory (SPARK WORKER MEMORY=15GB) and up to 16 cores
(SPARK WORKER CORES= 16). We set up Hadoop File System (HDFS) on each
of the nodes. YARN, a resource manager and a dashboard to visualize and summarize
the metrics, runs on the driver node. We set up REPL environment or Spark-shell in
each node to make sure that the debugging is swift when a transformation needs to be
performed on a set of data. Figure 2 summarizes the Apache Spark installation.
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Fig. 2. Apache Spark system configuration used for our work. The IP addresses are hidden for
privacy reason.

4.2 Description of Datasets

Data is generated every 6 h by an oceanographic model (NAVGEM-Navy Global Envi-
ronmental Model) that predicts various environmental variables for the next 24 h to
180 h. The number of output files from the model depends on the type of variable. The
data is generated for 198 different variables which cover the entire world with a pre-
cision interval of 0.5◦. The model generates multiple files with the results, and each
file contains only data for a single variable. The complete set of data for ten years is
about 110 TB, but we have only about 4.5 TB disk space available in the distributed
file storage. Therefore, we include only four variables for our experiments: ground sea
temperature, pressure, air temperature, and wind speed. We use Panoply [10] as a GUI
to visualize the input data and resulting data.

Our datasets cover the entire world, so the size of the data array is 361× 720, where
361 represents all latitude points from −90◦ north to +90◦ north with 0.5◦ increments,
whereas 720 represents all longitude points from 360◦ east to 0◦ NE with 0.5◦ incre-
ments as well.

Procedure for Data Collection. We collect our data using the following steps.

1. A Java program downloads the data into the filesystem.
2. NCAR Command Language was used to convert the data from GRIB (General

Regularly-distributed Information in Binary form) format [11] into the NetCDF3
data format.

3. CDO (Climate Data Operators [19], written by the Max Planck Institute for Meteo-
rology) was used to merge the data files so each file could contain data for multiple
variables.

4. Files were copied to the HDFS using standard HDFS commands.

We wrote a bash script to automate the above steps and make them seamless.
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4.3 SciSpark

Our application extends the functionality of the SciSpark [16] project by changing its
open source code as needed. SciSpark library facilitates the process by mitigating the
need to write wrapper classes to represent GRIB. The library provides a class called
SciTensor that represented NetCDF data and implemented all basic mathematical opera-
tions such as addition, subtraction, and multiplication. We add new functions to SciTen-
sor class to calculate maximum (max), minimum (min), and standard deviation. Other
significant changes included logic to account for missing variables in a dataset. For
multivariable analysis, we added relevant logic to create unique names for x and y axes
when creating NetCDF result file with more than one variable. We create RDDs using
SciTensor library and feed into the spark streaming queue.

4.4 Application in Use

Our application streams new files from a location in HDFS and writes the results back to
HDFS. The job runs with a configurable time window and performs transformations and
actions on all the RDDs accumulated during that time-frame. We use QueueStream API
in Apache Spark to read the stream of new RDDs inside the streaming job. New RDDs
are represented as a Discretized Stream (DStream) of type SciTensor. Spark Streaming
API defines DStream as the fundamental abstraction in Spark Streaming and is a con-
tinuous sequence of RDDs (of the same type) [26]. Figure 3 summarizes the outline of
our application.

Fig. 3. A simplistic overview of our entire application. We design a full-stack application that
automates data collection, data processing and visualizing the results.

A scheduled job running on the host runs every hour to download new data from
the FTP server. After the download is completed, the data is processed and uploaded to
HDFS. The streaming job running on the cluster processes these new files and update
the result. The website running on a separate server polls the result file and visualizes
the data using Google Maps.
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5 Performance Evaluation

We use statistical analysis on data using Apache Spark Streaming to generate summary
results in real-time. In the process, we also assess the dependability and scaling of the
Spark streaming framework.

5.1 Complexity of the Operation

We evaluate and measure two significant steps in the streaming process namely trans-
formation and action. We design multiple mathematical queries of varying complexity
and run jobs to measure the performance of Apache Spark Streaming. For example,
average, maximum and minimum are more straightforward mathematical operations,
whereas standard deviation can be regarded as a more complex one. We perform the
following statistical analyses: mean, max, min, and standard deviation. Once a user sub-
mits the streaming job, it cannot be changed for the lifetime of that job. The input sizes
per streaming window for each job were approximately 180MB, 500MB, 1GB, and
2GB. The streaming window was set as 6 h for the streaming process because the input
data is produced by the model every 6 h.

Variation of Each Statistical Analysis. Since GRIB1 data represents values in 361×
720 2D arrays and the values are scattered across multiple files, to calculate an aggre-
gate for each index, same indices across multiple files were aggregated. To calculate
aggregate results for each latitude and longitude points, 361 and 720 more values in
each file needed to be aggregated respectively. Moreover, calculating one single aggre-
gate result for all the values across all the files increased the operation complexity as
it had to aggregate more values. The variation in statistical analysis in ascending order
of complexity is listed as follows: (i) one result for each combination of latitude and
longitude points, (ii) one result for each latitude point, (iii) one result for each longitude
point, and (iv) one single aggregate result for all data points.

Table 1 shows the average execution time for each variation of all four statistical
analyses. It shows that the complexity of operation is directly proportional to the exe-
cution time. More transformations were required on data when running with variation
2, 3 and 4. Each additional transformation increased the length of the DAG and thus
increased the execution time.

Multivariable Analysis of the GRIB Data. In addition to the above metrics, we also
perform multivariable analysis to measure the latency of each streaming window. The
same four statistical analyses were performed but with a varying number of variables.
These analyses were serialized, thus increasing the number of transformations and
actions for each additional variable. There was 50GB data initially stored in HDFS
which required longer execution time as each worker had to process more data. Each
streaming window was once again fed with four different datasets of size 180MB,
500MB, 1GB and 2GB.

Figure 4 shows our results on the initial set of data. As expected, the execution time
increases with the complexity of operation. The standard deviation operation took the
most amount of time because the algorithm had multiple transformations to perform.
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Table 1. Result for statistical analysis

Variation Dataset size DAG length Execution time (s)

1 180MB 5 22

500MB 5 37

1GB 5 49

2GB 5 81

2 180MB 6 23

500MB 6 41

1GB 6 51

2GB 6 101

3 180MB 6 22

500MB 6 43

1GB 6 60

2GB 6 117

4 180MB 7 42

500MB 7 87

1GB 7 133

2GB 7 278

Fig. 4. Statistical Analysis of the initial set of data.

Further, as for DAG lengths, standard deviation has a larger DAG than those of max
and mean. The length of a DAG is directly related to the latency of the corresponding
streaming job. In other words, more map and filter functions are run on the dataset for
operations with higher complexity.

The size of the dataset for each 6-h period was roughly 1GB in size and latency for
streaming 1GB data was significantly smaller than the initial data. For input sources
that generate discrete data at a regular interval, the streaming job is more suitable than
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a batch processing job because of the lack of overhead in running an iterative job [6].
Figure 5 shows the results for batches of streams, which achieves better runtime perfor-
mance than the initial set of data.

Fig. 5. Statistical Analysis of batches of stream.

5.2 Number of Executor Nodes

We ran streaming jobs with a different number of worker nodes to record the change in
latency. Data was streamed from HDFS and YARNwas used as a dashboard to visualize
states of different worker nodes. Since Apache Spark utilizes the in-memory datasets
[23], the multi-node setup outperformed the single node-setup as it could use more
resources from each worker as shown in Fig. 6. It is clear from the figure that there is
linear scalability in latency for a streaming job. This result shows that the efficiency of
a streaming job is directly proportional to the number of workers.

Fig. 6. Statistical analysis on initial Transformation vs. # of executors.
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5.3 Scalability

As data grows and higher processing speed is desired, new nodes should be easily added
to the cluster. During our experiment, nodes were killed and started in the cluster with
a fair speed and easiness. We wrote bash scripts to control the state of a node and used
YARN dashboard to verify the state. Figure 7 shows the state of the cluster after multiple
nodes were killed. Further, Figs. 8 and 9 showcase how different metrics of a streaming
job can be visualized using Apache Spark’s dashboard. Figure 8 plots the scheduling
delay and Fig. 9 plots the processing time for batches ran with the different number of
executor nodes. Yellow represents six executors, brown five executors, and purple three
executors. The sizes of datasets in different batches were 180MB, 500MB, and 1GB.
The scheduling delay and processing time are both directly proportional to the size of
the data and inversely proportional to the number of worker instances.

Fig. 7. Status of dead workers on YARN dashboard.

Fig. 8. Scheduling delay for different datasets with the varying number of executors. Yellow rep-
resents six executors, brown five executors, and purple three executors. (Color figure online)
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Fig. 9. Processing time for different datasets with the varying number of executors. Yellow rep-
resents six executors, brown five executors, and purple three executors. (Color figure online)

5.4 Fault Tolerance

Spark can reconstruct the RDDs using lineage information stored in the RDD objects
when a node falls apart [23]. Since the data is already replicated across nodes in HDFS,
lost partitions can be reconstructed in parallel across multiple nodes without much over-
head. If the node running receiver fails, then another node is spun up with the receiver
which can continue to read from HDFS. If the receiver was using Kafka or Flume as
a source instead of HDFS, then a small amount of data may be lost which hasn’t been
replicated to other nodes in the cluster [6]. Wemeasure performance of a system running
streaming job with various node failures to access the fault tolerance capability of the
Apache Spark streaming. Spark’s dashboard interface was used to visualize the differ-
ence in latency for different batches running with and without node failures. Figure 10
shows that if some nodes fail while running a batch, it will take longer to account for
the lost nodes and reschedule those jobs in different node/s. For instance, stage ID 520
lost a node with two workers, and the driver had to reschedule seven tasks running on
that node somewhere else. As a result, the latency increased from 2.9 to 5.1min.

Fig. 10. Difference in processing time for node failures. The first row demonstrates the execution
time with node failures.

5.5 Visual Application

We develop a web interface to demonstrates a sample usage of our application. The web
page uses Google Maps and its developer API to visualize the results generated by our
application. The web application is written in .NET MVC framework. The server-side
code grabs the latest result from the cluster by using the WinSCP library (this was used
to avoid installing FTP on the master in the cluster), then converts the results into text
format using ncl dump. A text dump of the resulting NetCDF file was processed and
sent to the view. A JavaScript function regularly polls for the result, and once the Spark
application generates the result, it is visualized on the web (Fig. 11).
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Fig. 11. Screenshot of color-coded representation of the result. This UI visualizes a single variable
result file by color coding the latitude and longitude over google map based on the value of the
variable for that coordinate.

6 Additional Observations and Findings

Spark Streaming vs. Hadoop’s Batch processing vs. Storm Trident. An iterative
job like the one used in this experiment can be expressed as multiple Map and Reduce
operations in Hadoop. However, different MapReduce jobs cannot share data. So for
iterative analysis, the same dataset must be read from HDFS multiple times, and results
would need to be written to HDFS many times as well [5]. These iterations create much
overhead because of the I/O operations and other unwanted computations [8]. Spark
tackles these issues by storing intermediate results in memory. Spark Streaming uses
D-Streams or discretized streams of RDDs which provides consistent, “exactly-once”
processing across the cluster [25] and thus significantly increases the performance for
iterative analysis. Apache Storm can process unbounded streams of data in real time,
and it can be used alongside Hadoop, but it only guarantees “at-least-once” processing
[20]. Trident bolsters Storm by providing micro-batching and other abstractions that
would ensure “exactly-once” processing [21]. It would take three different libraries to
work seamlessly to accomplish what Spark Streaming can accomplish by itself. Time
and effort required to setup and maintain Storm Trident application along with Hadoop
can hamper the production and deployment. In contrast, Spark’s Streaming library is
directly written over its core and maintained by the same group who maintain the core’s
code base. Thus, Spark streaming outshines both Hadoop and Storm Trident combina-
tion for streaming scientific data.

Limitations of Spark. When a dataset is large enough not to allow any more RDDs
to be stored in memory, Sparks starts to replace RDDs, and such frequent replacement
degrades the latency [13]. However, for this work, we needed a framework that would
seamlessly stream a relatively large datasets, and Spark Streaming was able to handle it
efficiently.
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7 Conclusions

We use SciSpark successfully with Apache Spark to stream GRIB1 data in a streaming
application. The bulk of the logic in this application lies in the ability to convert the
statistical analysis into transformations and actions that would run upon the DStream
of RDDs of type SciTensor. Datasets ranging from 180MB to 50GB were used in the
application without running into any memory issues. Various properties of a streaming
application like operation complexity, scalability and fault tolerance were assessed, and
results were summarized using simple mathematical operations like mean, min/max
and standard deviation. Based on these results and other properties of apache Spark
Streaming, we are confident that Spark Streaming is a better solution to stream the
scientific data over Hadoop or Storm Trident.
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