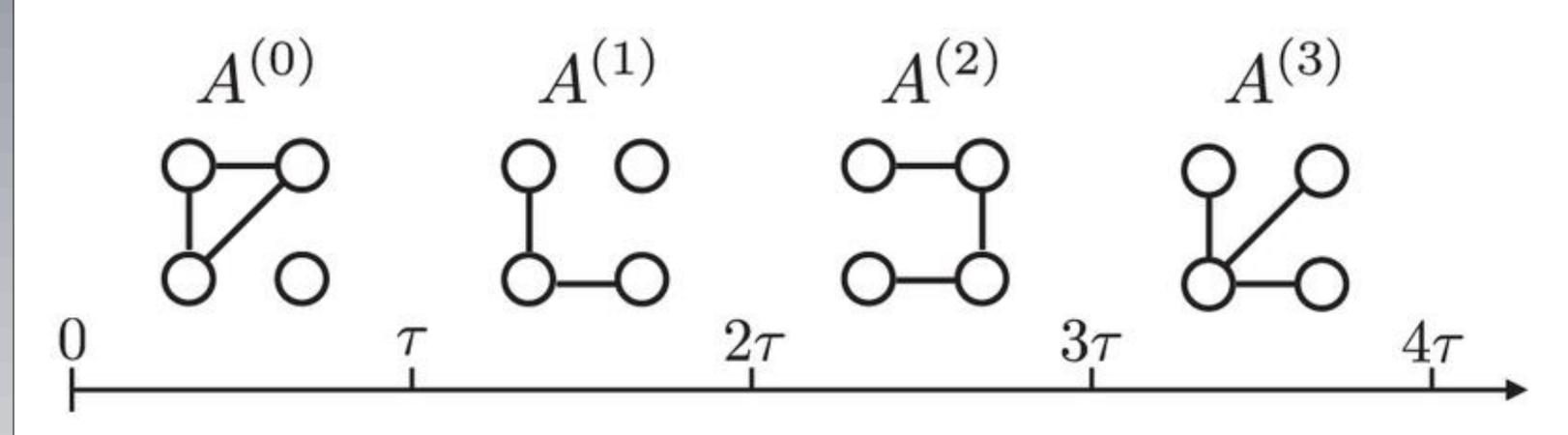


Parallel Algorithm and Analysis for Understanding Evolving Community Structures in Temporal Graphs

Naw Safrin Sattar¹, Shaikh Arifuzzaman¹, Khaled Ibrahim², Aydin Buluc²


{nsattar, smarifuz}@uno.edu, {kzibrahim, abuluc}@lbl.gov

Lawrence Berkeley National Laboratory

¹Big Data and Scalable Computing Research Group, Dept. of Computer Science, University of New Orleans ²Performance and Algorithms Research Group, Computational Research Division, Lawrence Berkeley National Laboratory

Introduction

Temporal Network

• Different real-world complex networks: social, biological, bibliographic, communication, computer systems, etc.

Evolving Temporal Community

- A temporal community is defined as a partition of the set of {node, time} pairs in the network
- Nodes moving from one community to another, makes some communities grow, and others shrink
- Social Network: User's preference for music, politics, food habit, etc., changes
- Bibliographic Network: Authors change topic of work (Data Science, Machine Learning)

Methods

Parallel Community Detection

- Evolutionary Clustering Method
- Graph metric for optimization: Permanence [3]

Analysis for Community Evolution

Graph Metrics	Function
Intra Community Edges	$E_{_{intra}}$
Internal Density	$2E_{intra}$
	$\frac{\overline{n_c(n_c-1)}}{n_c(n_c-1)}$
Average Degree	$\frac{2E_{_{intra.}}}{}$
	$\frac{\overline{n_c}}{n_c}$
Fraction over median	$ \{u: u \in C, \{(u, v): v \in C\} > d_m\} $
degree (FOMD)	n_c
Inter Community Edges	E_{inter}
Expansion	${\displaystyle \mathop{E}_{inter}}$
	$\overline{\mathbf{n}_c}$
Cut Ratio	$\underline{E_{inter}}$
	$\overline{\mathbf{n}_c(\mathbf{n}-\mathbf{n}_c)}$
Conductance	$\underline{\hspace{1cm}}_{inter}^{}$
	$_{_}$ $_{intra}$ $_{inter_}$
Normalized Cut	$E_{\underbrace{inter}}$ $+$ $\underbrace{E_{inter}}$
	$2E_{intra} + E_{inter} \cdot 2(E - E_{intra}) + E_{inter}$
Separability	$rac{E_{intra}}{}$
	E_{inter}
Clustering Coefficient	$CC(v) = \frac{n_i}{\binom{D(v)}{2}}$
Permanence	$Perm(v) = \left[\frac{I(v)}{D(v)} \times \frac{1}{E_{max}(v)}\right] - [1 - c_{in}(v)]$
	$\left[D(v) \cap E_{max}(v)\right] = \left[1 - c_{in}(v)\right]$

Real-world Networks [1,2,3]

Dataset	Snapshots	Nodes	Edges		
Cumulative Co-authorship	17	708,497	1,166,376		
Non-Cum Co- authorship	17	708,497	1,166,376		
College Msg	7	1,899	59,835		
Primary School	6	242	77,602		

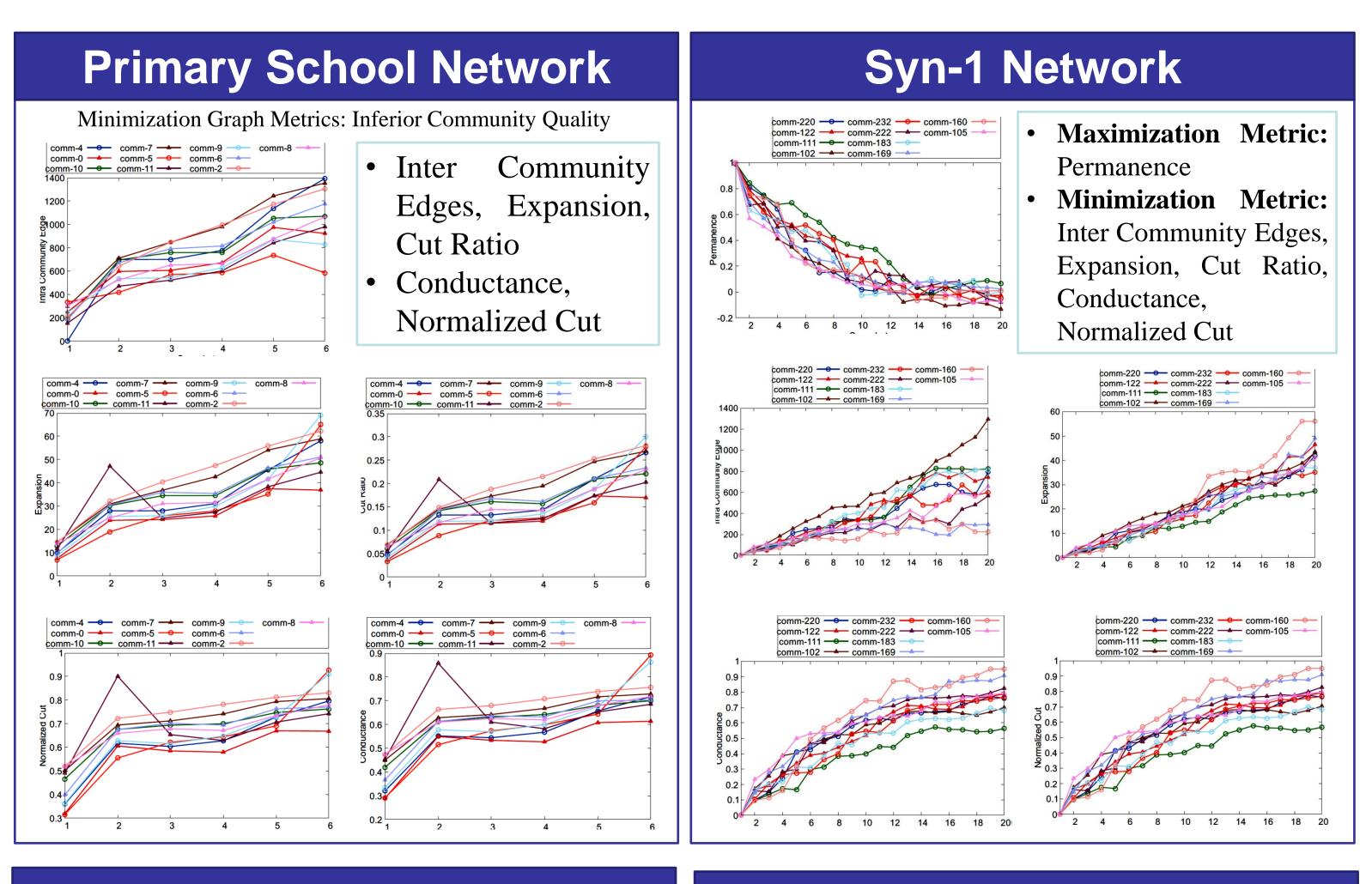
LFR Synthetic Networks

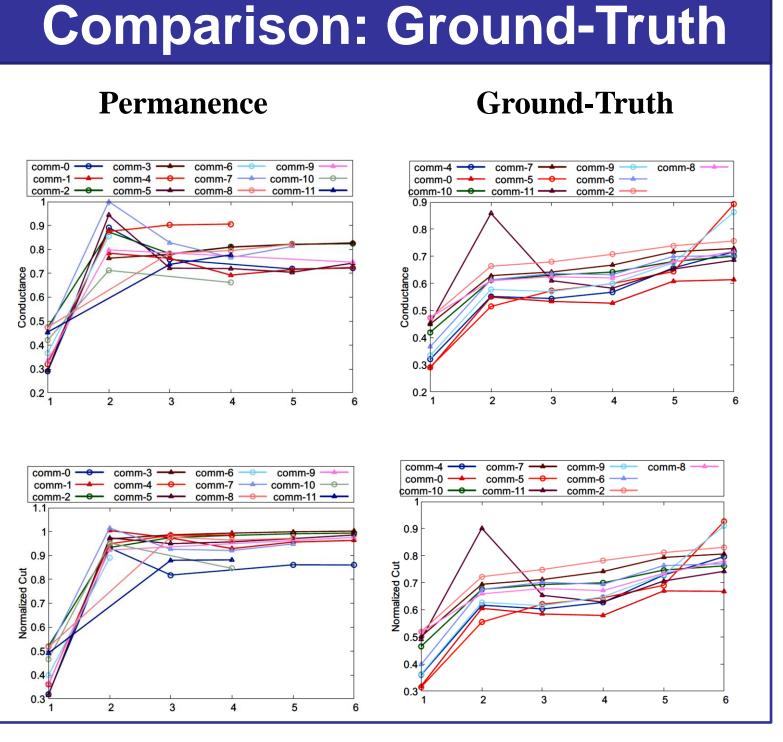
Dataset	Snapshots	Nodes	Mixing coefficient		
Syn-1	20	3500	0.2		
Syn-2	30	1000	0.2		
Syn-3	10	1000	0.2		

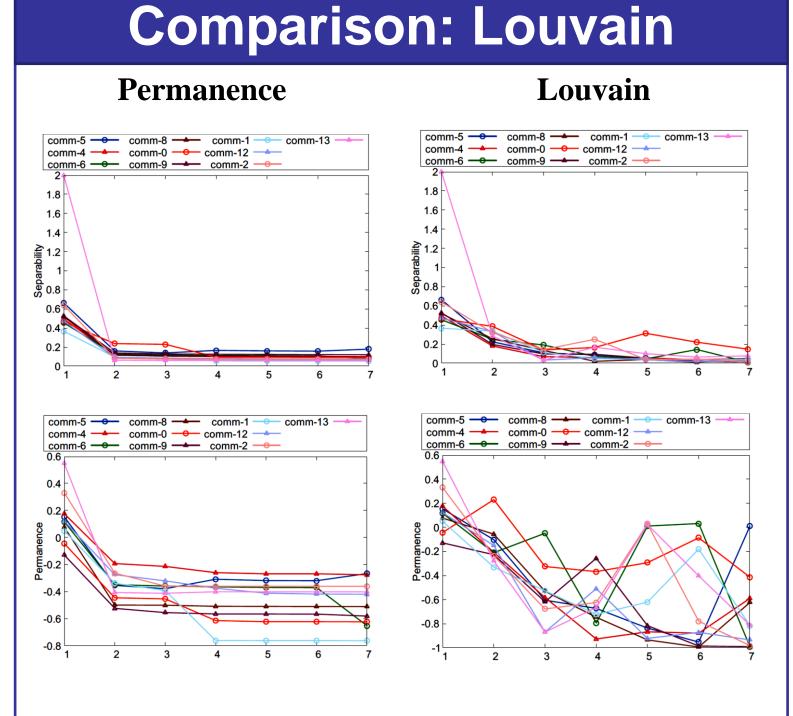
Score of the Graph Metrics for Community Quality

- Value Increased/(Decreased) over snapshots: Positive Score +1
- Value Decreased/ (Increased) over Snapshots: Negative Score -1
- Conductance, Normalized Cut, Separability, Clustering Coefficient and Permanence depends on both internal and external connection, so scoring value is doubled [+2 / -2]

Score	Maximization (1)							Minimization (2)		Maximization (2)					
					Minimization (1)										
	Intra				Inter						Clusteri		Total	Total Score	
	Comm		Average		Commu	Expansi	Cut	Conduc	Normali	Separah	ng	Perman	+ve,	without CR and	
Network			Degree		Edges	on	Ratio	tance	zed Cut	_	ent	ence	Score	CC	Quality
Primary															
School	0	1	1	1	-1	-1	-1	-2	-2	2	2	0	+7,-7	-1	Weak
College															
Msg	0	0	0	1	0	-1	-1	0	0	2	0	0	+3,-2	2	Strong
Cum															
CoA	1	-1	0	-1	-1	-1	1	0	0	0	0	0	+2,-4	-3	Weak
Syn-1	0	0	0	1	-1	-1	-1	-2	-2	2	0	-2	+3,-9	-5	Weak
Syn-2															
/Syn-3	0	0	0	1	-1	-1	-1	-2	-2	2	-2	-2	+3,-11	-5	Weak


Cut Ratio (CR) and Clustering Coefficient (CC): Minimal Change in Value => Same Community Quality


Results


Shared-Memory Parallel Algorithm College Message Cumulative Co-authorship Primary School Primar

Louisiana Optical Network Infrastructure (LONI) QB2 cluster: 1.5 Petaflop peak performance @2.8 GHz with over 10,000 Intel Xeon processing cores having 504 compute nodes, 20 cores per node.

Evolution of Community Quality w.r.t. Graph Metrics

Conclusions

- ~4-18x speed-up using thread model for shared memory parallelization
- Identification of a subset of graph metrics to understand the evolving community structure quality for different temporal networks
- Permanence-based communities showing similar or better community structure for both Ground-Truth and Louvain-derived [4] community structure
- Spike for the values of graph metrics in Louvain-derived communities indicating frequent change of the community members over communities

References

- 1. http://snap.stanford.edu/data/index.html#temporal
- 2. http://www.sociopatterns.org/
- 3. P. Agarwal, R. Verma, A. Agarwal, and T. Chakraborty, "Dyperm: Maximizing permanence for dynamic community detection," in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2018, pp. 437–449
- 4. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks, "Journal of statistical mechanics: theory and experiment, vol. 2008, no. 10,p. P10008, 2008.