2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Data Parallel Large Sparse Deep Neural Network on GPU

Naw Safrin Sattar and Shaikh Arifuzzaman
Department of Computer Science
University of New Orleans
New Orleans, LA-70148, USA.
Email: {nsattar, smarifuz} @uno.edu

Abstract—Sparse Deep Neural Network (DNN) is an emerg-
ing research area since deploying deep neoral networks with
limited resources is very challenging. In this work, we provide
a scalable solution to the Sparse DNN Challenge-a chal-
lenge posed by MIT/IEEE/Amazon GraphChallenge.org-by
designing data parallelism on GPUs. We provide a solution
based on Python TensorFlow as it is a widely used tool
in different scientific applications for deep learning. We use
the datasets provided by GraphChallenge, derived from the
MNIST handwritten letters. We use the Synthetic DNNs from
RadiX-Net with varying number of neurons and layers. We
implement a data parallel implementation of Sparse DNN
using TensorFlow on GPU. Our solution shows up to 4.7x
speedup over the baseline serial MATLLAB implementation
given in GraphChallenge. In addition to that, our TensorFlow
GPU implementation demonstrates a 3-fold speedup over our
TensorFlow CPU implementation.

Keywords-deep neural network; sparse data; parallel com-
puting; GPU; TensorFlow

I. INTRODUCTION

Nowadays, we have been observing a rapid growth of
deep learning applications in business, scientific and tech-
nical domains [1]-[4]. Such applications are assumed to
reign our lives in near future. For example, deep leamning
plays an important role in the field of speech recognition,
visual object recognition, object detection, drug discovery,
and genomics [5]. To address important problems in data-
intensive computing [1], e.g., extracting complex patterns
from massive volumes of data, semantic indexing, sentiment
analysis, data tagging [2], fast information retrieval [3],
[4], and simplifying discriminative tasks [6], deep learn-
ing techniques are being utilized heavily. However, deep
learning models these days require a significant amount of
memory and computing power which become a bottleneck
in the conditions where such resources are limited [7].
Deep Neural Networks (DNNs) are often much harder to
train than shallow neural networks. Larger neural networks
often perform better because larger number of layers/features
allow more non-linear boundaries. However, such larger
networks are constrained by large memory requirements.
Therefore, large-scale optimization [8]-[12] is needed to
address such challenges [13], [14]. Sparse (pruned) neural
networks deliver comparable performance with less amount
of memory resources. In order to use machine learning

978-1-7281-7445-7/20/$31.00 ©@2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00170

features on mobile devices (facial recognition or voice assis-
tants for instance), one needs small neural networks. Such
on-the-go applications are another important motivation for
using Sparse DNNs. With an increasing number of layers
and neurons, the weight matrices can be made sparse to
tackle the memory limitations. Pruning [15] results in better
generalisation results, improved speed of processing the
results and a reduced size as well. The need for sparse DNNs
has inspired the Sparse Deep Neural Network Graph Chal-
lenge by MIT/IEEE/Amazon GraphChallenge community.
The GraphChallenge seeks contribution from community
of researchers to come up with solutions in the field of
sparse data and graph analytics [16]-[18] by collecting
data from different scientific domains [19]. Sparse Deep
Neural Network Graph Challenge performs neural network
inference on a variety of sparse deep neural networks.

In this paper, we present a solution to the Sparse DNN
Graph Challenge using Python TensorFlow. We achieve up
to 4.7-fold speedup using GPUs over the serial MATLAB
implementation provided in GraphChallenge by implement-
ing Sparse DNN in data parallel mode. We also compare
different strategies of Distributed Training API of Tensor-
Flow and demonstrate their performance empirically.

The rest of this paper is organized as follows. We describe
the related works in Section III. Background of Deep Neural
Networks and the parallelization techniques are discussed
in Section II. In Section IV, we describe our methods to
implement a TensorFlow based data parallel sparse DNN us-
ing different strategies of distributed training of TensorFlow
in CPU as well as GPU. Our datasets and experimentation
environment are described in Section V. A detailed analysis
of the results is presented in Section VI . Finally, Section VII
summarizes the findings and concludes the paper with a
discussion of future possibilities.

II. PRELIMINARIES

In this section, we discuss the basic concepts of DNN
and the scope for parallelization of our serial baseline
methodology.

A. How DNNs work

A sample DNN is illustrated in Fig. 1. The primary math-
ematical operation performed by a DNN is the inference, or

1006

Figure 1: Four layer (L = 4) deep neural network architec-
ture. The input features y(©) are passed through a series of
network layers W (#=0:1:23) with bias terms b(=0:1:23) that
produce scores for categories y(Z=4)

forward propagation step. Inference is executed repeatedly
during training to determine both the weight matrix W () and
the bias vectors b") of the DNN. The inference computation
is given by Equation 1.

ytD = h(yme + b(n) §))

where, h() is a nonlinear function applied to each element
of the vector. A commonly used function is the rectified
linear unit (ReLU) given by Equation 2. For the Sparse
DNN challenge, k() also has an upper limit set to 32. ReLU
function sets negative values to 0 and values greater than 32
to 32,

y if0<y<32
hMy)=<¢0 ify<0 2)
32 ify>32

W (i,4) > 0 implies a connection between neuron ¢ and
neuron j, using the standard graph community convention.
Dimension of W) matrix is k x k where, k denotes the
number of neurons.

The quantities y¥) are row vectors. Each row is a feature
vector. In Sparse DNN Challenge, according to standard
graph community terminology, left matrix multiply is used
to progress through the network. Transposing all matrices
and multiplying on the right can be used according to
Standard AI definitions. The quantity b(") is a bias row
vector applied to each input.

When training a DNN, or performing inference on many
different inputs, it is usually necessary to compute multiple
y® vectors at once in a batch that can be denoted as the

matrix Y). The dimension of matrix Y is n x p where,
n = number of inputs, p = number of features. In matrix
form, the inference step follows Equation 3.

yi+1) — h(y(I)W(I) + B(i)) (3)

Here, B is a replication of b(*) along columns given by
Equation 4.
BW = pD|yWDone|,)

Here, one is a column array of 1‘s, and | |o is the zero
norm. The overall steps to calculate inference is given in
Algorithm 1.

Algorithm 1: Serial Inference Calculation in MAT-
LAB

Data: W is the Weight Matrix,

bias is the Bias Vector,

Y0 is the Input, MNIST Image

Result: Y
1 Yiaz + 32
2 Y+ Y0
3 nlayers + length(W)
4 for layer until nlayers do
5 | Z+ Y x W{layer}
6 | b+ bias{layer}
7 Y + Z+bsxfun(@times, double
(logical(Z)), bias{layer})

// bsxfun(Qz,a,b) applies =z

operation on arrays a and b

if Y <0 then
| Y+o0
10 end
1 else if Y > Yo, then
2 | Y ¢+ Ymas
13 end
14 end

B. Scopes for Parallelization

We aim at scaling up our sparse DNN based computing
task through parallel implementation. To parallelize the
DNN, we consider the following three possibilities.

1) Data Parallelism : In data parallelism [20], we split
inputs across all devices. The weight matrices need to be
replicated on every processor. This method might not be
the most space efficient but the design of such method is
comparatively less complex.

2) Model Parallelism: This paradigm requires splitting
up the layers and running in a pipeline parallel mode. It
requires communicating results after each group of layers.
It saves memory but the design is more complex. Achieving
balanced loads among multiple GPUs is very challenging,
The complexity of different DNN layers varies, introducing
significant efforts for programmers to partition model layers

to GPUs in a balanced way. In order to achieve pipeline
parallelism [21], understanding the mapping pattern of the
communication is vital. Pipeline parallelism, itself, is a sep-
arate field of research. Another shortcoming of this method
is to determine where the neural network is being split. The
neural network requirements to process data also needs to
be increased significantly. The weight staleness issue [22]
is another concern. Since gradients are computed with stale
weights, training instability and accuracy loss are persistent.

3) Hybrid Parallelism : This is a combination of data
and model parallelism. Benefits from both of them can be
combined in a hybrid [23]-[25] implementation.

In this paper, we use data parallelism for our parallel im-
plementation in an attempt to scale up our sparse DNN based
task. We use TensorFlow Distributed Training to implement
data parallelization for Sparse DNN in our experimentation.
We have left model and hybrid parallelism as our future
work.

III. RELATED WORK

There exist several work in the current literature that focus
on accelerating deep neural networks [26]-[32]. As provided
by GraphChallenge, a serial algorithm for Sparse DNN is
given in [27]. The MATLAB serial reference of the inference
calculation is given in Algorithm 1. They present the serial
timing measurements of the MATLAB code to be used as
a benchmark. They also provide parallel implementation of
the Sparse DNN benchmark. They parallelize the code by
splitting feature vectors, then develop and test it on the MIT
SuperCloud TX-Green supercomputer, Intel KNL processors
with 192 GB RAM using pMatlab.

Another solution to the Sparse DNN Challenge has been
provided by Davis et al. [28] using GraphBLAS ([33].
The sequential performance of the GraphBLAS solution
is 3x to 5x faster than the MATLAB reference imple-
mentation. OpenMP parallelism gives an additional 10x
to 15x speedup on a 20—core Intel processor, 17x on
an IBM Power8 system, and 20x on a Power9 system,
for the largest problems. The performance metric, Rate
measures the throughput of the implementation as the ratio
of the number of inputs times the number of connections
in the DNN divided by the execution time [27]. There
is an inconsistency in using the Rate formula in serial
MATLAB code and their GraphBLAS implementation. The
discrepancy between the computed rate for MATLAB code
in [28] and [27] can be misleading to the readers. This
variation happens as the number of inputs is not included
in the numerator for Rate calculation in [28] for MATLAB
code. Another Sparse DNN Challenge solution given in [26]
shows a GPU implementation of the GraphBLAS standard.
Their implementation shows a 1.94x speedup over the
“SuiteSparse” CPU implementation of GraphBLAS.

Apart from the Sparse DNN challenge, the authors in [29]
have proposed redundancy reduction schemes, including

the software/hardware co-designs of the structured sparse
neural network, an enhanced LRA algorithms and the ternary
quantized gradients training for the distributed DNN. In [30],
the authors propose a multiscale kernels approach to extract
optimal criteria for saliency detection where they suppress
nonsalient regions in the sparse labeling. The authors find
an interesting way to connect nodes in a sparsely connected
network [31]. Their sparse evolutionary training of artificial
neural networks algorithm evolves an initial sparse topology
(Erd6s-Rényi random graph) of two consecutive layers of
neurons into a scale-free topology during learning. Fully-
connected layers of artificial neural networks are replaced
with sparse ones before training and the parameters are
reduced quadratically with no loss in accuracy. In [32],
the authors develop a Structured Sparsity Learning (SSL)
method to regularize the structures (i.e., filters, channels,
filter shapes, and layer depth) of DNNs, that can learn a
compact structure from a bigger DNN to reduce computation
cost.

Our work is different from the work of [26], [28] as
we focus on an efficient data parallel implementation using
Python. Several deep learning frameworks, i.e., Tensorflow
[34], PyTorch [35], are written in Python. Many scientific ap-
plications use these widely used deep learning frameworks.
GraphBLAS focuses mainly on graph algorithms and is used
by a specific community of graph researchers. Our work
is generic in nature—it will help the end-users of different
domains to apply these techniques with ease and achieve
high performance capability.

IV. METHODOLOGY

We use Python TensorFlow to solve the Sparse DNN
problem. We implement our own layers by extending the
tf.keras.Layer class and implementing: *__init__ , where
we have done all input-independent initialization build. We
know the shapes of the input tensors and can do the rest of
the initialization call, doing the forward computation. For
the activation function, we use the basic marmul function to
implement our own ReLU function instead of the matrix
multiplication given in Algorithbm 1. A pseudocode for
initialization of our custom layer is given in 2. We use this
class myClass to build our model where the outer layer tracks
the weights of the inner layer. For brevity, detailed code for
model training is not described in the paper.

Initially, we start with a CPU implementation disabling
CUDA. We divide the 60,000 samples into 60 chunks of
1000 samples/chunk. Later on, we activate a single GPU to
check its performance. We use the Central Storage Strat-
egy from tf.distribute Strategy API where all variables and
operations will be placed on the GPU if a single GPU is
available. This strategy is experimental and may change in
future.

With multiple GPUs, we can use the extra computing
power effectively by increasing the batch size. Using the

Algorithm 2: A Pseudocode for creating custom
layer to build our own model in TensorFlow

Data: W is the Weight Matrix,
bias is the Bias Vector,
Y0 is the Input, MNIST Image
1 Yiaz ¢+ 32
/* The custom layer class
encapsulating both the layer’s
"weights" and a transformation
from inputs to outputs
class myClass(layers.Layer)
__init_ () // Input dimension and
general initialization
build() // Initialization of layer
weights and bias
call() // The layer’s forward pass
init()

{

*/

-

super.__init_ ()
self.unit < unit

self.we Wg

Y + tf.matmul(inputs, self.w) + self.b
if Y < 0 then
Y+«0
end
else if Y > Y., then
Yo Ymnz
end
return Y

ERRBRERBGE=

largest batch size that fits the GPU memory utilizes the
resources efficiently. But we have only 2 GPUs, limited by
our system. So, we have used 60 chunks, batch size of 1000
throughout our experimentation,

For distributed training, we use tf.distribute.Strategy
API. This is a TensorFlow API to distribute training
across multiple GPUs, multiple machines or TPUs. We
use the GPU functionality only. There are 6 different
types of strategies available. But we choose to work with
tf.distribute.MirroredStrategy because it is fully supported
by Keras API and other strategies are still in experimen-
tal support phase. Mirrored Strategy supports synchronous
distributed training on multiple GPUs on one machine. It
creates one replica of the model per GPU device. Each

Table I: Memory Requirement for various DNN size

Nearon Total Memory
per Layer Netioi Experiment Done
Layer (GB)
120 122,880 0.117 Yes
1,024 [480 491,520 0.469 Yes
1,920 1,966,080 1.875 Yes
120 491,520 0.469 Yes
4,096 | 480 1,966,080 | 1.875 Yes
Only CPU, Exceed
1,920 7,864,320 1.5 Local Memory for
GPU
120 1,966,080 | 1.875 Yes
16,384 Only CPU, Exceed |
480 7,864,320 15 Local Memory for
GPU
1,920 | 31,457,280 | 30 No
120 7,864,320 1.5 No
65,536 | 480 31,457,280 | 30 No
1,920 | 125,829,120 120 No

variable in the model is mirrored across all the replicas.
Together, these variables form a single conceptual variable
called MirroredVariable. These variables are kept in syn-
chronization with each other by applying identical updates.
MirroredStrategy takes care of replicating the model’s train-
ing on the available GPUs, aggregating gradients, and more.
Efficient all-reduce algorithms are used to communicate the
variable updates across the devices. All-reduce aggregates
tensors across all the devices by adding them up and makes
them available on each device. It’s a fused algorithm that
is very efficient and can reduce the overhead of synchro-
nization significantly. There are many all-reduce algorithms
and implementations available, depending on the type of
communication available between devices. By default, it
uses NVIDIA NCCL as the all-reduce implementation. The
other communication schemes are Hierarchical Copy All
Reduce and Reduction To One Device. We try different
communication schemes to achieve the best result.

Later on, we experiment with the strategy
tf-distribute.experimental MultiWorkerMirroredStrategy
to perfrom a comparative analysis of different strategies
in multiple GPUs. Similar to MirroredStrategy, it creates
copies of all variables in the model on each device across all
workers. Two different implementations are available in the
experimental support: CollectiveCommunication. NCCL and
CollectiveCommunication.Ring for collective operations.
We use both and select the best one depending upon the
number and kind of GPUs available in our system, and the
network interconnect in the cluster.

We could not experiment with the 65536-neuron case as
its storage requirement significantly exceeds the available
memory of our system. Table I shows the memory require-
ment for working with each of the different sizes of DNNs.
Scaling to a large dataset require a different approach, most
certainly exploiting model parallelism or combination of
model and data both, a hybrid strategy.

N=1024 L=120 —e—N=1024 L=1920 ‘- ©--

N=1024 L=480 — & - N=4096 L=120 —A—N=4096 L=1920 ---A-- N=16384 L=480 — » -

N=4096 L=480 — & -N=16384 L=120 —%—

10 T

Rate (x1011)
__I\;l W Ny (5] [=)] ~J [#:] w0

0
MATLAB

1GPU 2 GPUs

Compute Environment
Figure 2: Change of Rate with increasing computing power compared to the MATLAB baseline for different size of DNNs

V. EXPERIMENTAL SETUP

A. Environment

We used Louisiana Optical Network Infrastructure
(LONI) to perform all the experiments. QB2 [36], a 1.5
Petaflop peak performance cluster containing 504 compute
nodes with over 10,000 Intel Xeon processing cores of
2.8 GHz, 20 cores per node. A single node has two 960
NVIDIA Tesla K20x GPUs with 128GB memory, 500 GB
HDD, that has been used for the experiments performed
using GPUs. However, the available local memory for each
GPU is limited to 5.566GB. QB2 has RedHat Enterprise
Linux 6 Operating System, 56 Gb/sec (FDR) InfiniBand
2:1 oversubscribed mesh, 1 Gb/sec Ethernet management
network, 10 Gb/sec and 40 Gb/sec external connectivity.
NVIDIA Driver 396.51 has been used with CUDA 10.0 and
the TensorFlow version is 1.14,

The serial MATLAB code has been run on an Intel Core
i7-4770 CPU @ 3.4GHzXx8 processor and 16 GB RAM
machine with MATLAB version R2015a.

B. Dataset
Table II: MNIST Input Resizing
Neurons Size Input Dimension
1024 176 MB 32 x 32
4096 800 MB 64 x 64
16384 | 3.6 GB 128 x 128

Sparse DNN Challenge requires input data or feature
vectors Yp. MNIST (Modified National Institute of Standards
and Technology) is a large database of handwritten digits
that is widely used for training and testing DNN image
processing systems. MNIST consists of 60,000 28 x 28
pixel images. Truth categories for MNIST are included for
performing inference using DNN with specific numbers of
layers. The Sparse DNN Graph Challenge uses interpolated
sparse versions of this entire corpus as input.

Sparse DNNs in MNIST corpus are resized to produce
neural networks of varying dimensions shown in Table IL
Each 28 x 28 pixel image is resized to 32 x 32 (1024
neurons), 64x 64 (4096 neurons), 128 x 128 (16384 neurons),
and 256 x 256 (65536 neurons). The resized images are
thresholded so that all values are either 0 or 1. The images
are flattened into a single row to form a feature vector. The
non-zero values are written as triples to a .tsv file where
each row corresponds to a different image, each column is
the nonzero pixel location and the value is 1. We also use
Synthetic DNNs created using RadiX-Net [37] with varying
number of neurons and layers.

VI. RESULT

In this section, we describe the performance of our
data parallel implementation of the Sparse DNN Challenge.
While running the serial MATLAB implementation, we
faced some difficulties because of the version compatibility
issues of MATLAB. We needed to change some functions

1010

Table III: Computational Result on Different Sparse DNNs using MATLAB on CPU; Python TensonFlow on both CPUs

and GPUs, Speedup calculated w.r.t. Baseline MATLAB Serial Implementation

Neurons Connection MATLAB Python TensorFlow
per Layer tlidq;mo‘8) CPU 1 GPU 2 GPUs
Layer x 1 Rate Rate Rate Rate
Time 9 Time 9 Time] Time 9
10 eedu 10 1
| 0| G| 0| Sotn) | 07| et G| <100 St
120 3.93 126.3 1.87 75.603 3.23 1.67 47.5 528 | 2.66 26.914 8.83 | 4.69
1,024 | 480 15.73 466.7 202 | 289.296 | 3.37 1.61 208.1 585 | 224 1187754 | 8.07 | 3.93
1,920 62.91 1,862.01 | 203 1,391.672| 3.01 1.34 763.74 538 2.43 410986 | 9.26 4,33
120 15.73 921.2 1.02 562.649 1.71 1.64 437.7 2.46 2,10 227.528 436 4,05
4,096 [480 62.91 3,540.7 1.07 2,290483 | 1.68 | 1.55 1,489.4 282 | 2.38] . 4.51
1,920 | 251.66 16,579 0.91 114757 | 143 | 144 Local Memory of GPU exceeded
16.384 120 62.91 3,990.3 0.95 2,583.25 | 1.51 1.54 1,667.17 | 259 [2.39 [9575571 | 4.11 | 4.17
: |~ 480 251.66 21,626 0.70 1593236 | 1.13 1.36 Local Memory of GPU exceeded
< L-120 —e— 5

15+ L5F
)) 1 L 1
e = = . wifas ou iomw 2eme MATLAB CPU 1GPU 2GPUs
Compute Enviranment Compute Environment Compute Environment
(a) 1024 Neurons (b) 4096 Neurons (c) 16384 Neurons
Figure 3: Speedup of DNNs in Python TensorFlow CPUs and GPUs over the baseline MATLAB Implementation [L denotes
number of Layers]
| CPU mmmm 1 GPU mmmm 2 GPUs
3-5 T T T T T T

1011

H=1024,L=120 N=1024,L=480 N=1024,L=1920 N=4096,L=120 N=4096L-480 N=16384,L=120
DNN

Figure 4: Speedup of DNNs in GPUs over the CPUs using Python TensorFlow [N-Neuron, L-Layer]

| Nccl All Reduce
1m Ll T

Reduction To One Device mmmm

Hierarchical Copy All Reduce mmmm |

88§§§§

Time (sec)

N=1024,=120 N=1024,.=480

N=1024,L.=1920

1

N=4096,L=120 N=4096,L=480

DNN

N=16384,1=1920

Figure 5: Change in Runtime for Different Cross Device Communication Patterns for Distributed Mirrored Strategy [N-

Neuron, L-Layer]

[Collective Communication Nccl #= Collective Communication Ring mmmm |

Time (sec) o
ss 5 ¥ 8888

—
o
T

h=1024,L=120 N=1024,L=480 N=1024,L=1920 N=4096,L=120 N=4096,L.=480 N=16384,L=1920

DNN

Figure 6: Change in Runtime for Different Cross Device Communication Patterns for Distributed Multi Worker Mirrored

Strategy [N-Neuron, L-Layer]

to run the baseline serial MATLAB code. We have sum-
marized the experimentations performed on different Sparse
DNNs in Table III. We compute speedup for our CPU
and GPU implementations keeping the MATLAB sequential
code as baseline. We get upto 4.7x speedup in terms of
computational time over the baseline sequential MATLAB
implementation using 2 GPUs. The inference rate changes
with increasing computation power for various DNN sizes
shown in Figure 2. Our change of inference rate is similar
in nature as given by J. Kepner using pMatlab [27]. The
runtime speedup over the baseline MATLAB for different
DNNs is depicted in Figure 3. For different numbers of
neurons, how the speedup varies with changing layers is

portrayed. In case of smaller number of layers (L=120), all
of the DNNs show speedup in between 4 to 5.

Table IV: Performance Comparison of Different Strategies
for Distributed Training in TensorFlow

Neurons Multi
per Layer Mirrored | Speedup| Worker Speedup
Layer Mirrored
120 26.91 4.69 31.81 3.97
1,024 480 118.75 393 127.22 3.67
1,920 410.99 4.53 470.06 396
4096 120 22753 4.05 249 81 3.69
y | 480 785.05 4.51 867.33 4.08
16,384 | 120 957.56 417 1,015.23 393

1012

Besides, our parallel implementation using GPUs, our
CPU sequential implementation is 1.34 x —1.67x faster than
the MATLAB sequential implementation. The speedup of
our GPU implementation compared to our CPU implementa-
tion is shown in Figure 4. We get up to 3.38 x speedup using
2 GPUs over the CPU implementation. The performance is
proportionally scalable with the available number of GPUs.
We can use only 2 GPUs available in our system. The
scalability can be increased by using more GPUs.

We also experiment with different strategies of Tensor-
Flow Distributed Training. Mirrored Strategy works better
than the Multi Worker Mirrored Strategy as shown in Table
IV. The reason might be that Multi Worker Mirrored Strat-
egy has Experimental Support whereas Mirrored Strategy is
fully supported in TensorFlow. Mirrored Strategy as well
as the Multi Worker Mirrored Strategy support different
cross device communication methods. We experiment with
each communication schemes and find out the best one.
In case of Mirrored Strategy, the default scheme Nccl All
Reduce outperforms the other two and takes less time
shown in Figure 5. While experimenting with Multi Worker
Mirrored Strategy, we find that Nvidia’s NCCL works faster
compared to the ring-based collectives using gRPC as the
communication layer depicted in Figure 6.

VII. CONCLUSION AND FUTURE WORK

Deep Neural Networks have become one of the prominent
research topics in recent times to support modern Artificial
Intelligence activities in current world. We face scalabil-
ity difficulties while working with deeper neural networks
falling under the domain of Big Data. The Sparse DNN
Challenge given by MIT/IEEE/AmazonGraphChallenge.org
focuses on developing new solutions to help the community
solving the problems in the domain of graph analytics,
machine learning, sparse dataset, big data, high performance
computing, and visual analytics. In our work, we provide
a solution to the Sparse DNN Challenge using Python
TensorFlow. We have achieved 4.7x speedup in data
parallel mode in GPU over the baseline sequential MATLAB
implementation. We have compared different strategies of
TensorFlow Distributed Training and showed their perfor-
mance. Our work will help the scientific community who use
TensorFlow for deep learning in their application to achieve
high performance. We get 2.9x speedup using only 2 GPUs
over our CPU implementation. We will perform experiments
on large number of GPUs in other systems to show the
scalability of our solution in our future work. In future,
we plan to compare our performance with GraphBLAS
implementation and other approaches in the same system
used by those work. We will also work towards model
parallelism and hybrid parallel implementations for Sparse
DNNEs.

1013

ACKNOWLEDGMENT

This work has been partially supported by Louisiana
Board of Regents RCS Grant LEQSF (2017-20)-RDA-25
and University of New Orleans ORSP SCORE award 2019.
We also thank the anonymous reviewers for the helpful
comments and suggestions to improve this paper.

REFERENCES

[1] B. Jan, H. Farman, M. Khan, M. Imran, I. U. Islam, A. Ah-
mad, S. Ali, and G. Jeon, “Deep learning in big data analytics:
a comparative study,” Computers & Electrical Engineering,
vol. 75, pp. 275-287, 2019.
[2] N.S. Sattar, S. Arifuzzaman, M. F. Zibran, and M. M. Sakib,
“Detecting web spam in webgraphs with predictive model
analysis,” in 2019 IEEE International Conference on Big Data
(Big Data). IEEE, 2019.
[3] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Bug localization with combination of deep learning and
information retrieval,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). 1EEE,
2017, pp. 218-229.
[4] H.Liand Z. Lu, “Deep learning for information retrieval,” in
Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, 2016,
pp- 1203-1206.
[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep leaming,” nature,
vol. 521, no. 7553, pp. 436444, 2015.
[6] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar,
N. Seliya, R. Wald, and E. Muharemagic, “Deep leaming
applications and challenges in big data analytics,” Journal of
Big Data, vol. 2, no. 1, p. 1, 2015.
[71 1. Kepner, V. Gadepally, H. Jananthan, L. Milechin, and
S. Samsi, “Sparse deep neural network exact solutions,”
2018 IEEE High Performance extreme Computing Conference
(HPEC), Sep 2018. [Online]. Available: http://dx.doi.org/10.
1109/HPEC.2018.8547742
[8] N. S. Sattar, “Scalable community detection using distributed
louvain algorithm,” 2019.
[9] S. Arifuzzaman, M. Khan, and M. Marathe, “Fast parallel
algorithms for counting and listing triangles in big graphs,”
ACM Trans. Knowl. Discov. Data, vol. 14, no. 1, Dec. 2019.
[Online]. Available: https://doi.org/10.1145/3365676
[10] S. Arifuzzaman and M. Khan, “Fast parallel conversion of
edge list to adjacency list for large-scale graphs,” in Proceed-
ings of the 23rd High Performance Computing Symposium
(HPC 2015), Alexandria, VA, USA, April 2015, pp. 17-24.
[11] C. Meng, M. Sun, J. Yang, M. Qiu, and Y. Gu, “Training
deeper models by gpu memory optimization on tensorflow,”
in Proc. of ML Systems Workshop in NIPS, 2017.
[12] N. S. Sattar, T. Aqila, and R. Shahriyar, “Towards concurrent
data structure development with relaxed synchronization,” in
2016 9th International Conference on Electrical and Com-
puter Engineering (ICECE). IEEE, 2016, pp. 267-270.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training
deep nets with sublinear memory cost,” arXiv preprint
arXiv:1604.06174, 2016.

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfigar, and S. W.
Keckler, “vdnn: Virtualized deep neural networks for scal-
able, memory-efficient neural network design,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2016, pp. 1-13.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

N. S. Sattar and S. Arifuzzaman, “Overcoming mpi commu-
nication overhead for distributed community detection,” in
Workshop on Software Challenges to Exascale Computing.
Springer, 2018, pp. 77-90.

——, “Parallelizing louvain algorithm: distributed memory
challenges,” in 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing (DASC). 1EEE, 2018, pp.
695-701.

S. Arifuzzaman, M. Khan, and M. V. Marathe, “PATRIC: a
parallel algorithm for counting triangles in massive networks,”
in Proceedings of the 22nd ACM International Conference on
Information and Knowledge Management (CIKM 2013), San
Francisco, CA, USA, October 2013, pp. 529-538.

“Motivation.” [Online]. Available: https://graphchallenge.mit.
edw/

C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein,
R. Frostig, and G. E. Dahl, “Measuring the effects of
data parallelism on neural network training,” arXiv preprint
arXiv:1811.03600, 2018.

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen,
H. Lee, J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient
training of giant neural networks using pipeline parallelism,”
in Advances in Neural Information Processing Systems, 2019,
pp. 103-112.

C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and
robust parallel dnn training through model parallelism on
multi-gpu platform,” arXiv preprint arXiv:1809.02839, 2018.

A. Krizhevsky, “One weird trick for parallelizing convo-
lutional neural networks,” arXiv preprint arXiv:1404.5997,
2014.

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni et al.,
“Hypar-flow: Exploiting mpi and keras for scalable hybrid-
parallel dnn training using tensorflow,” arXiv preprint
arXiv:1911.05146, 2019,

B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen,
“Lbann: Livermore big artificial neural network hpc toolkit,”
in Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, 2015, pp. 1-6.

1014

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

X. Wang, Z. Lin, C. Yang, and J. D. Owens, “Accelerating
don inference with graphblas and the gpu,” in 2019 IEEE
High Performance Extreme Computing Conference (HPEC).
IEEE, 2019, pp. 1-6.

J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin,
R. Robinett, and S. Samsi, “Sparse deep neural network graph
challenge,” arXiv preprint arXiv:1909.05631, 2019.

T. A. Davis, M. Aznaveh, and S. Kolodziej, “Write quick,
run fast: Sparse deep neural network in 20 minutes of
development time via suitesparse: Graphblas,” in 2019 IEEE
High Performance extreme Computing Conference (HPEC).
IEEE, 2019, pp. 1-6.

B. Li, W. Wen, J. Mao, S. Li, Y. Chen, and H. H. Li, “Running
sparse and low-precision neural network: When algorithm
meets hardware,” in 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC). 1EEE, 2018, pp. 534—
539.

K. Yan, X. Wang, J. Kim, and D. Feng, “A new aggregation
of dnn sparse and dense labeling for saliency detection,” IEEE
Transactions on Cybernetics, 2020.

D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen,
M. Gibescu, and A. Liotta, “Scalable training of artificial
neural networks with adaptive sparse connectivity inspired
by network science,” Nature communications, vol. 9, no. 1,
pp. 1-12, 2018.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Leamning
structured sparsity in deep neural networks,” in Advances in
neural information processing systems, 2016, pp. 2074-2082.

A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang,
“The graphblas c api specification,” GraphBLAS. org, Tech.
Rep., 2017.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard er al., “Ten-
sorflow: A system for large-scale machine learning,” in /2th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265-283.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga ef al.,
“Pytorch: An imperative style, high-performance deep learn-
ing library,” in Advances in Neural Information Processing
Systems, 2019, pp. 8024-8035.

“Documentation — user guides — gb2,” http://www.hpc.lsu.
edu/docs/guides.php?system=QB2.
R. A. Robinett and J. Kepner, “Radix-net: Structured

sparse matrices for deep neural networks,” arXiv preprint
arXiv:1905.00416, 2019.

