
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 5237

Community Detection using Semi-supervised
Learning with Graph Convolutional Network on

GPUs
Naw Safrin Sattar and Shaikh Arifuzzaman

Department of Computer Science
University of New Orleans

New Orleans, LA-70148, USA.
Email: {nsattar, smarifuz}@uno.edu

line social media, biological sciences, business systems, and
the Internet [5]. Such large datasets (including graph/network
data) necessitate scalable methods for efficient and effective
sense-making [6], [7].

Due to the advancement of data technology and comput-
ing resources, machine learning, particularly deep learning,
has become a popular and exciting area of research for a
growing number of applications [8]–[11]. Graph Convolutional
Network (GCN) combines both graph algorithms and deep
learning and provides a wide avenue of practical applicability.
GCN has demonstrated great promise in mining graph data
(citation, social, and protein-protein interaction networks) [9],
predicting protein interface [12], disease classification [13],
molecules discovery in chemistry, text classification [14],
identifying traffic congestion, image classification [15], [16],
etc.

Using semi-supervised learning we can achieve the same or
comparable result with less computational cost compared to a
traditional community detection method. Community detection
has several applications where this computational cost is high
because of large datasets. Estimating unknown features of
users/entities in social networks is a common application of
community detection. If we think of Facebook network, it has
over 2.6 billion active users. Traditional community detection
algorithms need to analyze the full network to detect the
communities and is computationally expensive. In case of
semi-supervised learning, the main advantage is that if we
have community information of a part of the network, we can
predict the rest communities depending on those community
labels for such large networks.

In this work, we use graph convolutional network to de-
tect communities in large graphs using semi-supervised node
classification. Our key contributions are as follows.

• Model: We present a scalable method for detecting
communities via semi-supervised node classification. We
apply Mini-batch Gradient Descent to solve the memory
issues of GCN for larger and denser networks. We use
Identity Matrix as Feature set and achieve better perfor-
mance compared to node-based Graph Feature Set.

Abstract—Graph Convolutional Network (GCN) has drawn
considerable research attention in recent times. Many different
problems from diverse domains can be solved efficiently using
GCN. Community detection in graphs is a computationally chal-
lenging graph analytic problem. The presence of only a limited
amount of labelled data (known communities) motivates us for
using a learning approach to community discovery. However,
detecting communities in large graphs using semi-supervised
learning with GCN is still an open problem due to the scalability
and accuracy issues. In this paper, we present a scalable method
for detecting communities based on GCN via semi-supervised
node classification. W e o ptimize t he h yper-parameters f or our
semi-supervised model for detecting communities using PyTorch
with CUDA on GPU environment. We apply Mini-batch Gradient
Descent for larger datasets to resolve the memory issue. We
demonstrate an experimental evaluation on different real-world
networks from diverse domains. Our model achieves up to 86.9%
accuracy and 0.85 F1 Score on these practical datasets. We
also show that using identity matrix as features, based on the
graph connectivity, performs better with higher accuracy than
that of vertex-based graph features. We accelerate the model
performance 4 times with the use of GPUs over CPUs.

Index Terms—graph convolutional network, community detec-
tion, graph problems, semi-supervised learning, machine learn-
ing, deep learning, neural network, optimization, GPU

I. INTRODUCTION

Community detection in graphs (or graph clustering) is
an important graph analysis kernel with many real-world
applications in diverse socio-technical domains including so-
ciology, biology, infrastructure, web, and epidemiology [1]–
[3]. For example, clustering helps studying the effect of
rumor or epidemic spreading in social or population network.
Functional units in protein-interaction networks can also be
found by community detection [4]. In general, community
detection kernel identifies large-scale map of a network where
individual communities act like meta-nodes or functional units.
Communities reveals significant i nsights o n t he organization,
function, or structural characterization of a system represented
by graph [1].

Nowadays, we experience a huge growth of data generating
from data-driven scientific and technical disciplines, e.g., on-

20
20

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
72

81
-6

25
1-

5/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

00
22

.2
02

0.
93

78
12

3

5238

• Data: We experiment with a diverse set of real-world
networks from different domains. Our model achieves
around 86.9% accuracy and 0.85 F1 Score. For the
popular datasets, our model performs comparably with
the state of the art and even better in several cases.

• Experiment: We provide an extensive and thorough
experimental evaluation of our model. We perform an
optimization on the hyper parameters for better accuracy.
We demonstrate a comparison of our method with related
work empirically. We also accelerate the model perfor-
mance 4 times using GPUs.

The rest of this paper is organized as follows. We de-
scribe the existing related works in Section II. Preliminary
introduction on Graph Convolutional Network is presented in
Section III. We describe our methods to generate features and
train the model in Section IV. A detailed analysis of the results,
e.g., description of our datasets, experimental setting, model
performance, optimization of the hyper parameters, improve-
ment of model accuracy, model speedup with parallelization,
etc., are described in Section V .

II. RELATED WORKS

There has been a rich literature of community detection
in networks [1]–[3], [7], [17]–[21]. Most of these works are
computationally expensive and do not scale well to large-
sized networks. Kipf et al. [9] demonstrate some promising
results based on GCN for graph clustering, albeit using a small
dataset (Zachary’s karate club network). Both modularity-
based clustering [22] and untrained 3-layer GCN Model [9]
detect the same clusters for the said network. The authors [9]
did not extend their work for large and more diverse datasets.

Another work by Chen et al. [23] used graph neural network
(GNN) to detect communities with supervised learning. The
paper restricted the largest community size to 800 nodes.
They used networks having average community size below
30 in their experiments. Thus, an extensive experimentation
with large-scale graphs with variety of domain and structural
properties is still missing in literature.

GraphSAGE [10] is a framework designed to efficiently
generate representations on evolving graphs with previously
unseen data leveraging node attribute information. The mean
aggregator used by the paper is nearly equivalent to the con-
volutional propagation rule used in the GCN framework [9]. In
experimentation, they omit the largest communities from the
networks. LAyer-Dependent ImportancE Sampling (LADIES
) [24] is also a sampling based method. This algorithm selects
their neighborhood nodes depending on the sampled nodes
in the upper layer and constructs a bipartite subgraph. Then,
the method computes the importance probability accordingly
and samples a fixed number of nodes based on this proba-
bility. But the authors limited their experimentation to a few
small-sized dataset. Another framework, Neural Overlapping
Community Detection (NOCD) is a graph neural network
model for overlapping community detection [25]. They use
the Bernoulli–Poisson (BP) model that allows for overlapping
communities. One major difference between their model and

GCN [9] is that they apply batch normalization after the first
graph convolution layer. Another distinction is L2 regulariza-
tion being applied to all weight matrices.

Our work is unique from the above works based on the facts
that we have used large-scale networks in our experiments
and have not limited the number of communities as done
in [10], [23]. We also compare our work with GraphSAGE
[10] and our model shows better performance (as presented in
Section V-D). We have done a comprehensive experimentation
taking networks from diverse domains whereas only small-
sized citation networks were used in previous work [9]. Thus,
our method is not prone to any bias that a particular domain
or class of dataset might introduce. We have also used vertex-
based metrics to generate Graph Feature Set and have made
prediction on this feature set as well. In addition, we have
made our model scalable to large graphs and compute systems
using GPUs.

Cluster-GCN [26] is a SGD-based (Stochastic Gradient
Descent) algorithm to design the minibatches based on ef-
ficient graph clustering algorithms. This method restricts the
neighborhood search within the subgraph and achieves good
memory and computational efficiency. GraphSAINT [27] is
another graph sampling based inductive learning method that
constructs minibatches by sampling the training graph, rather
than the nodes or edges across GCN layers. This method
ensures extracting appropriately connected subgraphs so that
little information is lost when propagating within the sub-
graphs. In this method information of many subgraphs are
combined together so that the training process overall learns
good representation of the full graph. Our work differs from
both in choosing the minibatches. In our work we do the
sampling based on dense neighborhoods and keep track of the
nodes in two consecutive layers. In our sample networks given
in the experiments, the communities or labels vary within a
large range, but these two methods experiment on networks
with a limited number of labels.

III. PRELIMINARIES

In this section, we present a brief introduction to Graph
Convolutional Network (GCN). GCN is a neural network
that operates on graphs. GCN utilizes the graph structure
and collects node information from the neighborhoods in a
convolutional manner. Given a graph G = (V,E), a GCN
takes as input
• an input feature matrix, X of N × F dimension, where,
N = number of nodes in graph G and
F = number of input features for each node, and

• an adjacency matrix, A (N ×N) of graph G.
There is a hidden layer Hi = f(Hi−1, A)) where H0 = X
and f is a propagation rule. Each layer Hi corresponds to an
N × F i feature matrix. Features are aggregated to form the
next layer’s features using the propagation rule f . The output
label is denoted by Y .

GCN approaches fall into the following two categories:
� Spatial-based: Feature information from local neighbors

are aggregated.

5239

– Recurrent-based: Steady states of nodes are col-
lected.

– Composition-based: Higher orders of neighborhood
information are obtained.

� Spectral-based: Noise from graph signals are removed.
An Eigen decomposition of the Laplacian Matrix of the
graph is performed.

Here we will focus on Spectral GCNs only. For an L-layer
GCN, the layer-wise propagation rule can be written as Eqn.
1.

Z(l+1) = A′X(l)W (l), X(l+1) = σ(Z(l+1)), (1)

where, X(0) = X and Z(L) = Y . The activation function
σ(.) is often the element-wise ReLU function. Weight Matrix
W (l) ∈ RF×F is the feature transformation matrix. A′ is
the normalized and regularized adjacency matrix. For semi-
supervised node classification, we have to minimize the error
over all labeled examples. The error function is given in Eqn.
2. We use Cross-entropy Error as the loss function.

L =
1

| Y |
∑
i∈Y

loss(Yi, zLi) = −
1

| Y |
∑
i∈Y

M∑
c=1

Yi,c ln pi,c (2)

Here, M is number of node-labels/class. Yi is predicted
probability observation. pi,c denotes Yi is of class c.

IV. METHODOLOGY

In this section, we describe our machine learning model by
presenting the methods for feature generation, training, testing
and validation.

A. Computational Tools/Libraries

We use PyTorch [28] for deep learning models. Initially, we
use Gephi [29] for feature generation from node statistics of
the graph. Subsequently, we use GraphVis: Interactive Visual
Graph Mining and Machine Learning Tool [30] to export node-
based features from the graphs. We also use Weka [31] for
selecting attributes after generating node-based feature set.
Pytorch 1.0.1 has been installed within Anaconda [32] 4.6.11
environment. Python scikit-learn [33], [34] module is used for
performance evaluation of the model.

B. Model Classifier

We follow two steps to build our classifier. In the first step,
we generate features from the datasets. We train the model
using the generated features in the second step. Both of these
steps are described in the subsequent sections.

1) Feature Generation: We have used two types of feature
sets. One feature set is Identity Matrix where the model is
aware of the identity of each node by a unique one-hot vector.
The identity matrix is of N ×N dimension, where, N is the
number of nodes. A one-hot vector is a 1×N matrix (vector),
being used to represent the encoding of each node in the graph.
The vector consists of 0s in all cells with the exception of a
single 1 in a cell used uniquely to identify each node. Using
the identity matrix as the feature matrix results in highly local
representations of each node, i.e., nodes that belong to the

TABLE I: Node-based Feature Set Generated Using Gephi

No. Attribute Description
1 Degree the number of edges connected to the node

2 Triangle the number of times a node is included in
forming a triangle

3

Clustering
Coefficient
(Watts-
Strogatz)

a measure of how complete the neighborhood
of a node is

4 Betweenness
Centrality

measures how often a node appears on shortest
paths between nodes in the network

5 Bridging
Coefficient

the average probability of leaving the direct
neighbor subgraph of a node

6 Bridging
Centrality

a node centrality index based on information
flow and topological locality in networks; prod-
uct of the betweeness centrality and the bridg-
ing coefficient

7 Eccentricity the maximum graph distance between a node
and any other vertex of the graph

8 Eigen Cen-
trality

a measure of node importance in a network
based on a node’s connections

9 Pagerank measures the importance of each node within
the network

10 Authority indicates the value of the node itself

11 Hub estimates the value of the links outgoing from
the node

same area of the graph are likely to be embedded closely
together. In case of distant areas it is difficult for the network
to share knowledge in an inductive fashion. In spite of this
difficulty, results are comparable to other embeddings using
more expensive unsupervised training procedure.

Another feature set is based on node statistics of the
network. We use Gephi to generate this feature set. The
attributes for this feature set is shown in Table I. After
generating the features we normalize the features using Weka
to keep consistency among the values. While working with
larger datasets, we cannot use Gephi to get the node statistics
because of graph size limitations in Gephi. Gephi can support
graphs upto 1 million nodes and 1 million edges. As we are
experimenting with graphs larger than that size, to generate
the node statistics we use another tool, GraphVis: Interactive
Visual Graph Mining and Machine Learning Tool. Another
reason to use GraphVis is that using the features generated
by GraphVis show better accuracy compared to that of Gephi.
For GraphVis, we use the features numbered 1, 2, 3, 4, 7, and
9 from Table I, same as Gephi. Additional features generated
by GraphVis is given in Table II.

TABLE II: Additional Node-based Features Generated Using
GraphVis

No. Attribute Description

a kcore-number The core number of a node is the largest
value k of a k-core containing that node.

b 4-clique Number of 4-cliques formed by the vertex

c 4-chordal-cycle Number of 4-chordal-cycle formed by the
vertex

d 4-tailed-triangle Number of 4-tailed-triangle formed by the
vertex

2) Training Model: At first, we apply the Louvain algo-
rithm to our input graph to generate the community of each

5240

node for using as label to train the model. We use a diverse
set of data for which ground-truth community is not available.
Louvain algorithm is a well-established algorithm and widely
used for community detection [1], [7], [17]. It is an efficient
heuristic for community detection and used for large-scale
datasets using the parallel variants of Louvain method [20],
[35], [36]. So, we detect the communities from thlso compares
oure graph datasets using Louvain algorithm and use as the
ground-truth for each network. The community distribution
found from the Louvain algorithm is used for labelling the
classes for the labelled dataset. Therefore, the accuracy found
in our model a model with the Louvain algorithm. As different
networks have different community structure, generating the
labelled dataset is necessary for each individual network. If
we have sufficient labelled data available for a network, we
can skip the initial label generation for the networks using
Louvain algorithm.

As we are using semi-supervised classification, we divide
our dataset into training, validation and test sets. We keep
the ratio of training data lower for semi-supervised learning.
Initially, we use a random distribution of training, validation
and test sets. We keep the label rate 0.001 for the random
distribution. Label rate is the ratio of the size of training
data to total labelled data. Validation set and test set are
divided into 1 : 2 ratio within the rest of the labelled data.
Random distribution does not work well because many classes
might have very few labelled instances and those classes
cannot be classified correctly. Thus, we choose classes that
have at least 30 instances and discard classes having fewer
instances than 30. We name it as ‘30-I’ for 30 instances and
‘N -I’ in general while considering classes with N instances.
Training, validation and test sets are divided similarly as
random distribution. The main difference is that instead of the
whole labelled dataset, instances are chosen depending on the
number of instances in each class. The performance of node-
based feature set is poor using ‘30-I’ (we describe the reason
in Section V). Therefore, we choose ‘40-I’ for this feature set
and get improved accuracy. Based on the number of labelled
data using ‘30-I’ and ‘40-I’, we choose the optimal label rate
given in Section V.

We apply the GCN Model as described in [9] for training.
We use non-linear activation function ReLU [37] for prop-
agation rule. We perform forward propagation through the
GCN. We apply the ReLU function row-wise on the last
layer in the GCN. We compute the cross entropy loss on
known node labels. We backpropagate the loss and update
the weight matrices in each layer. The model is trained for a
specified number of epochs where the loss is calculated for
each training example and the error is backpropagated. But in
case of larger networks (networks having more than 70,000
vertices), instead of Batch Gradient Descent, we choose Mini-
batch Gradient Descent. Batch size of 1200 is used throughout
the experimentation. We sample the mini batches by selecting
the nodes with dense neighborhoods. We keep the track of the
nodes in consecutive two layers so that our algorithm does
not suffer from sparse connection problem. Our Mini-batch

Algorithm 1: GCN using Mini-batch Gradient Descent
Input: Graph Adjacency Matrix A, Feature Matrix X ,

Label Y , Layer Depth K;
Output: Node representation Z

1 Partition graph nodes into b mini-batches
V1,V2, · · · ,VB

2 for k = 1...K do
3 for b = 1...B do
4 for u ∈ Vb do
5 Update Weight matrix W (k)

6 end
7 end
8 Calculate Z
9 end

GCN algorithm is presented in Algorithm 1. The next step is
then invoked to update the model parameters. We train our
model to a maximum number of epoch and use early stopping
with a window size of 10. We stop training if the validation
loss does not decrease for 10 consecutive epochs. We tune the
hyper parameters of the model to get the best performance.
The optimized parameters are described in Section V. These
parameters are dependent on the nature and properties of the
network.

To speed up the execution of our model, we use the
functionality of PyTorch on GPUs using CUDA. Pytorch
uses one GPU by default and we use multiple GPUs by
running our model parallely using DataParallel approach.
DataParallel automatically splits data and sends job orders to
multiple models on multiple GPUs. After each model finishes
their job, DataParallel collects and merges the results before
returning. As available GPU memory is limited to 5.566GB
in QB2, while working with the larger networks, we load a
chunk (portion) of data since the entire graph does not fit in
memory for computation. We keep the chunk size 1200 in
our experimentation. Therefore, for our largest (according to
number of vertices) graph [DBLP (317,080 vertices)], around
1.37GB space is taken by each of the adjacency matrix and
the identity matrix. So, for a single pass of the full network,
it takes around 70,000 iterations for loading the data into
memory for further computations. We also change our model
from Batch Gradient Descent to Mini-batch Gradient Descent
in GPU because full training set is not available to the model
for larger datasets. Thus, the weights are updated using the
mean gradient of the mini-batch.

V. EXPERIMENTAL EVALUATION
In this section, we summarize the results from our experi-

mentation. We describe the datasets used in our experimenta-
tion in Sec. V-A, and report the computational setting in Sec.
V-B we have used for this paper. In Sec. V-C, we describe
the results to optimize our model with minimized error. We
compare our model with the state-of-the-art methods in Sec.
V-D. Finally, in Sec. V-E, we show the performance of our
model in different computing environment.

5241

TABLE III: Networks Used in Experimentation

Network Type Name Vertices Edges Description Source

Citation
cit-DBLP 12,591 49,743 DBLP Citation Network [30]

cit-hepTh 27,770 352,807 Arxiv High Energy Physics Theory paper citation
network [6]

cit-hepPh 34,546 421,578 Arxiv High Energy Physics Phenomology paper cita-
tion network [6]

Communication
email-Eu-core 1,005 25,571 Email data from a large European research institution [6]
email-Enron 36,692 183,831 Email communication network from Enron [6]

email-dnc 1,900 37,400 Network of emails in the 2016 Democratic National
Committee email leak. [30]

Internet
p2p-Gnutella31 62,586 147,892 Gnutella peer to peer network from August 31 2002 [6]
p2p-Gnutella24 26,518 65,369 Gnutella peer to peer network from August 24 2002 [6]
p2p-Gnutella08 6,301 20,777 Gnutella peer to peer network from August 8 2002 [6]

Collaboration
DBLP 317,080 1,049,866 DBLP collaboration network [6]
ca-GrQc 5,242 14,496 Collaboration network of Arxiv General Relativity [6]
ca-HepPh 12,008 118,521 Collaboration network of Arxiv High Energy Physics [6]

Biological
human-BNU 177,679 15,669,037 Human brain network where edges represent fiber

tracts that connect one vertex to another [30]

bio-grid-human 9,527 62,364 category of Biological Networks [30]

bio-human-gene-2 22,283 12,345,963 Human gene regulatory network derived from analyz-
ing gene expression profiles. [30]

Road
road-euroroad 1,174 1,417 Europe Road Network [30]
road-usroads 129,164 165,435 US road network [30]
road-luxembourg-osm 114,599 119,666 Open Street Map Road Network of Belgium [30]

Social
slash-dot 77,360 905,468

Slashdot social network, containing friend/foe links
between the users of Slashdot, obtained in November
2008

[6]

wiki-Vote 7,115 103,689 Wikipedia who-votes-on-whom network [6]
ego-Facebook 4,039 88,234 Social circles from Facebook (anonymized) [6]

TABLE IV: Performance Evaluation for Different Networks Based on Identity Matrix and Node Features

No. Network Accuracy Precision Recall F1 Score
Identity
Matrix

Graph
Feature

Identity
Matrix

Graph
Feature

Identity
Matrix

Graph
Feature

Identity
Matrix

Graph
Feature

1 cit-DBLP 85.44 69.17 0.81 0.61 0.87 0.54 0.84 0.57
2 cit-hepTh 84.54 57.93 0.83 0.53 0.81 0.64 0.82 0.58
3 cit-hepPh 82.80 65.60 0.80 0.66 0.87 0.50 0.83 0.57
4 email-Eu-core 86.40 60.24 0.85 0.67 0.82 0.54 0.83 0.60
5 email-Enron 82.39 56.54 0.86 0.55 0.75 0.55 0.80 0.55
6 email-dnc 85.49 60.72 0.84 0.64 0.75 0.65 0.80 0.65
7 p2p-Gnutella31 86.35 61.30 0.86 0.65 0.79 0.50 0.83 0.57
8 p2p-Gnutella24 84.61 55.55 0.85 0.53 0.80 0.68 0.82 0.60
9 p2p-Gnutella08 82.39 62.50 0.82 0.64 0.87 0.65 0.84 0.65
10 DBLP 82.10 69.02 0.85 0.54 0.77 0.79 0.81 0.64
11 ca-GrQc 85.80 61.58 0.84 0.51 0.87 0.79 0.85 0.62
12 ca-HepPh 82.95 67.74 0.82 0.63 0.87 0.79 0.84 0.70
13 human-BNU 85.10 60.97 0.81 0.58 0.76 0.70 0.79 0.63
14 bio-grid-human 83.20 68.16 0.86 0.61 0.79 0.66 0.82 0.63
15 bio-human-gene-2 86.90 55.43 0.85 0.63 0.78 0.67 0.81 0.65
16 road-euroroad 83.42 61.96 0.85 0.69 0.77 0.75 0.81 0.72
17 road-usroads 81.14 69.81 0.83 0.52 0.81 0.75 0.82 0.61
18 road-luxembourg-osm 81.96 59.11 0.86 0.55 0.76 0.75 0.81 0.64
19 slash-dot 86.35 65.32 0.84 0.69 0.80 0.65 0.82 0.67
20 wiki-Vote 85.26 58.76 0.86 0.60 0.81 0.68 0.83 0.64
21 ego-Facebook 83.76 63.85 0.86 0.59 0.81 0.69 0.83 0.64

TABLE V: Label Rate of Different Networks Used in Experiments for Both Identity Matrix Feature Set and Graph Feature
Set [I.M.-Identity Matrix, G.-Node-based Graph features]

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
I.M. 0.019 0.015 0.024 0.022 0.010 0.017 0.025 0.023 0.027 0.019 0.013 0.015 0.002 0.007 0.010 0.009 0.007 0.005 0.003 0.009 0.007
G. 0.018 0.011 0.006 0.010 0.011 0.004 0.007 0.021 0.023 0.010 0.016 0.020 0.002 0.006 0.005 0.019 0.016 0.007 0.006 0.024 0.008

5242

A. Dataset

We describe the datasets used in our experiments in Table
III. All of these networks are taken from 7 different domains.
All of these are real-world networks and have been collected
from SNAP [6] and Network Repository [30]. Experimenting
on a large range of networks gives us the chance to evaluate
our method extensively, on datasets with varied topological
and structural characteristics.

B. Experimental setting

Some initial experiments on smaller graphs have been
conducted on Ubuntu 16.04 LTS, intel core i7 processor
@3.4GHz×8, and 16GB memory. However, we perform all
other experiments (including the ones on large graphs) on
Louisiana Optical Network Infrastructure (LONI). QB2 [38], a
1.5 Petaflop peak performance cluster containing 504 compute
nodes with over 10,000 Intel Xeon processing cores of 2.8
GHz has been used for the experiments performed. QB2 has
two 960 NVIDIA Tesla K20x GPUs with 128GB memory.
QB2 has RedHat Enterprise Linux 6 Operating System, 56
Gb/sec (FDR) InfiniBand 2:1 oversubscribed mesh, 1 Gb/sec
Ethernet management network, 10 Gb/sec and 40 Gb/sec
external connectivity. NVIDIA Driver 396.51 has been used
with CUDA 10.0.

C. Model Optimization

We summarize our result in Table IV with respect to
the model performance evaluation metrics. We consider the
modularity-based communities calculated using the Louvain
algorithm [1], [7] as ground-truth. Thus, the accuracy of our
model compares our algorithm with the Louvain algorithm.
In addition to accuracy, we also measure precision, recall,
and F1 score as these metrics are widely used for multi-
class classification problem. Precision is useful when the
costs of false positive is high. Recall is useful when there
is a high cost associated with false negative. F1 score is a
better measure to use if we need to seek a balance between
precision and recall and there is an uneven class distribution.
We observe that identity matrix based feature set performs
better than the node-based feature set. The reason behind is
that the node-based features are not directly correlated with
the communities. Two nodes connected to each other are not
necessarily “close”. So, such node-based features are not a
good predictor for communities. We get around 87% accuracy,
86% precision, 87% recall and 85% F1 score for identity
matrix based feature set. In addition, for node-based feature
set, we get around 70% accuracy, 69% precision, 79% recall
and 72% F1 score. Imbalanced labelled data might be a reason
for the reduced accuracy. The number of classes for multi-class
classification is very large. It is one of the reasons for reduced
performance of the model in terms of accuracy. In order to get
the best model, we tuned the hyper-parameters. For brevity, we
have shown the experimentation for the identity matrix based
feature set only. For node-based feature set, we use the same
optimized hyper parameters.

TABLE VI: Performance Evaluation for Different Networks
with Random Train-Test Distribution [I.M.-Identity Matrix,
G.-Node-based Graph features]

Network Accuracy Precision Recall F1 Score
I.M. G. I.M. G. I.M. G. I.M. G.

ego-Facebook 55.18 30.33 .45 .19 .29 .15 .35 .27
email-Eu-core 66.26 55.48 .55 .26 .62 .31 .57 .24
ca-GrQc 63.30 13.17 .70 .10 .63 .13 .63 .09

1) Training Data Distribution: Distribution of training set
and test set plays an important role to improve the accuracy of
the model. Initially, we use a random distribution of training
and test set. Random distribution does not work well in this
case. Table VI shows that the accuracy is very poor for some
of the graphs using both identity matrix feature as well as
node-based graph feature.

TABLE VII: Model Performance Improvement Using Changed
Number of Labels Per Class for Node-based Graph Features

Network 30-I 40-I
cit-DBLP 47.88 69.17

email-Eu-core 55.45 60.24
p2p-Gnutella08 49.35 62.50

ca-GrQc 25.69 61.58
bio-grid-human 36.76 68.16
road-euroroad 43.86 61.96
ego-Facebook 35.25 63.85

Thus, instead of random distribution, we choose ‘30-I’
described in Section IV. For Identity Matrix Feature Set,
the model accuracy shown in Table IV is found using ‘30-
I’ classification. In case of Graph Feature set, initially we
consider ‘30-I’ but find that accuracy is poor. Later we choose
‘40-I’ and accuracy improves on an average 69% given in
Table VII. Choosing ‘40-I’ suffers from the exclusion of many
mid-sized communities from the dataset. Results shown in
Table IV for node-based graph feature set is given for ‘40-
I’ classification. The improved accuracy is in between 55.4%
to 69.8% for all networks reflected in Table IV.

 55

 60

 65

 70

 75

 80

 85

 90

 0.001 0.01 0.025 0.05 0.075 0.1

Ac
cu

ra
cy

 (
%

)

Label rate

cit-hepPh
email-Enron

p2p-Gnutella31
slash-dot

road-usroads
human-BNU

DBLP

Fig. 1: Change of accuracy with increasing label rate for
identity matrix based feature set. The optimal label rate is in
between the range 0.001 to 0.025 for all domains of network,
to prevent the model from over-fitting.

5243

 72

 74

 76

 78

 80

 82

 84

 86

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

cit-hepTh
cit-DBLP

cit-hepPh

(a) Citation Networks

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

email-dnc
email-Eu-core

email-Enron

(b) Communication Networks

 74

 76

 78

 80

 82

 84

 86

 88

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

p2p-Gnutella31
p2p-Gnutella24
p2p-Gnutella08

(c) Internet Networks

 72

 74

 76

 78

 80

 82

 84

 86

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

DBLP
Ca-GrQc

ca-HepPh

(d) Collaboration Networks

 79

 80

 81

 82

 83

 84

 85

 86

 87

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

human-BNU
bio-grid-human

bio-human-gene-2

(e) Biological Networks

 72

 74

 76

 78

 80

 82

 84

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

road-euroroad
road-usroads

road-luxembourg-osm

(f) Road Networks

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ac
cu

ra
cy

 (
%

)

Learning Rate

slashdot
wiki-Vote
Facebook

(g) Social Networks

Fig. 2: Accuracy for different networks varying learning rate hyper parameter. For learning rate of 0.01, best accuracy is
achieved for all network domains.

2) Label Rate: Label rate is an important parameter to
evaluate the model performance. We keep the label rate small
to prevent the model from over-fitting. Figure 1 depicts the
change of accuracy with varying label rate for identity matrix
based feature set. Networks from the same domain show
similar behavior. To keep it simple, we have shown a single
network from each domain in Figure 1. For social, road
and biological network domains, the optimal label rate is in
between 0.001 to 0.01. The model tends to over-fit if the label
rate goes beyond 0.025 and above. For the rest of the network
domains, the optimal label rate is in between 0.01 to 0.025.
Based on the optimal values, we use the label rate for each
network given in Table V. Number 1−21 refers to the networks
described in Table IV. For node-based graph feature set, we
keep the label rate within the range 0.001 to 0.025, to prevent
the model from over-fitting.

3) Number of Convolutional Layers: Increasing the number
of convolutional layers does not serve our purpose well and
the model accuracy decreases by 35.5% on average given in
Table VIII. So, we use a 2-layer GCN for our model in all

TABLE VIII: Change of Model Performance with Varying
Number of Convolutional Layers

Network 2 Layers 3 Layers
cit-DBLP 85.44 62.34

email-Eu-core 86.40 59.46
p2p-Gnutella08 82.39 39.54

ca-GrQc 85.80 65.12
bio-grid-human 83.20 35.26
road-euroroad 83.42 55.52
ego-Facebook 83.76 64.34

experiments.
4) Learning Rate: Figure 2 shows the change of accuracy

with learning rate for different types of networks. With smaller
learning rate of 0.01, we achieve the best accuracy for each
of the networks. We have increased the learning rate up to
0.1 and have not showed results for higher values because
the accuracy drops a lot beyond this value. We separately
plot each types of networks to understand their pattern. All
of these network categories follow a similar pattern. In case

5244

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu

ra
cy

 (
%

)

Dropout

cit-hepTh
cit-DBLP

cit-hepPh

(a) Citation Networks

 76

 78

 80

 82

 84

 86

 88

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu

ra
cy

 (
%

)

Dropout

email-dnc
email-Eu-core

email-Enron

(b) Communication Networks

 74

 76

 78

 80

 82

 84

 86

 88

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu

ra
cy

 (
%

)

Dropout

p2p-Gnutella31
p2p-Gnutella24
p2p-Gnutella08

(c) Internet Networks

 55

 60

 65

 70

 75

 80

 85

 90

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ac
cu

ra
cy

 (
%

)

Dropout

DBLP
Ca-GrQc

ca-HepPh

(d) Collaboration Networks

 60

 65

 70

 75

 80

 85

 90

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ac
cu

ra
cy

 (
%

)

Dropout

human-BNU
bio-grid-human

bio-human-gene-2

(e) Biological Networks

 60

 65

 70

 75

 80

 85

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ac
cu

ra
cy

 (
%

)

Dropout

road-euroroad
road-usroads

road-luxembourg-osm

(f) Road Networks

 60

 65

 70

 75

 80

 85

 90

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ac
cu

ra
cy

 (
%

)

Dropout

slashdot
wiki-Vote
Facebook

(g) Social Networks

Fig. 3: Accuracy for different networks varying dropout hyper parameter. For Citation, Communication and Internet Networks
optimum dropout is 0.5. Except Road Networks, other domains have 0.1 optimum dropout.

 80

 100

 150

 200

 300

 400

 600

 800

 1000
 1200

 1600

 2000
 2400
 2800
 3200
 3800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ti
m

e(
se

c)

Dropout

cit-hepPh
email-Enron

p2p-Gnutella31
slash-dot

road-usroads
human-BNU

DBLP

Fig. 4: Time-Efficiency with Increased Dropout Relaxing
Accuracy for Networks from All Domains

of biological networks (Figure 2e), after reduced accuracy, the
accuracy does not go beyond 80%, and learning rate can be
relaxed to 0.1. The change of accuracy is also low and varies
within the range of 4 to 5. For communication (Figure 2b) and
social (Figure 2g) networks the range of change of accuracy is
between 4 to 7. In case of the rest types of networks (Figures
2a, 2c, 2d, 2f), the change of accuracy is higher and varies in
between 6 to 11.

5) Dropout: We also vary the dropout given in Figure 3 and
determine the optimized parameter with maximum accuracy.
For collaboration (Fig. 3d), biological (Fig.3e) and social (Fig.
3g) networks, accuracy decreases with increasing dropout.
In case of road networks (Fig.3f), accuracy decreases with
dropout. But for “road-euroroad”, accuracy is increased up to
a certain point, 0.5 then starts decreasing. For the rest three
types of networks (Fig.3a, 3b, 3c), accuracy increases with
dropout until 0.5, then accuracy falls. Increasing the dropout
lessens the run-time of the model shown in 4. In certain cases,
where we can relax the accuracy to some extent, we can opt
for a higher dropout.

5245

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 50 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

 (
%

)

Epoch

email-Eu-core
road-euroroad

email-dnc

ego-Facebook
Ca-GrQc

p2p-Gnutella08

wiki-Vote
bio-grid-human

(a) Smaller Networks

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 300 350 400 450 500 550 600 650 700 750

A
c
c
u
ra

c
y
 (

%
)

Epoch

ca-HepPh
cit-DBLP

bio-human-gene-2
p2p-Gnutella24

cit-hepTh
cit-hepPh

email-Enron

(b) Medium-sized Networks

 66
 68
 70
 72
 74
 76
 78
 80
 82
 84
 86
 88

 100 200 300 400 500 600 700 800 900 1000

A
cc

u
ra

cy
 (

%
)

Epoch

p2p-Gnutella31
slash-dot

road-luxembourg-osm

road-usroads
human-BNU

DBLP

(c) Larger Networks

Fig. 5: Accuracy for different networks varying the number of epoch. The optimal number of epoch for smaller, medium and
larger networks are 200 to 250, 500 to 650 and 700 to 800 respectively.

6) Number of Epoch: We also optimize the number of
epoch for each graph that gives the best performance in terms
of accuracy, as depicted in Figure 5. From Figure 5a, we
observe that for relatively smaller sized networks, the optimum
number of epoch is 200 − 250. In case of the medium sized
networks, the epoch size varies in between 500 to 650, as
shown in Figure 5b. For larger networks, keeping the epoch
in between 700− 800 provides the best accuracy, as shown in
Figure 5c.

D. Comparison with the Related Methods

TABLE IX: Comparison of Our GCN-based Method and Other
Related Existing Methods [10], [39] on arxiv and PPI datasets.

Method

arxiv Dataset
[Performance
Metric: Test
Accuracy (%)]

PPI Dataset
[Performance
Metric: F1 Score]

MLP 55.50±0.23 N/A
Node2Vec 70.07±0.13 N/A

GCN 71.74±0.29 N/A
GraphSAGE 71.19±0.27 0.612
Our Model 71.43±0.17 0.698

To compare our model with other existing algorithms, we
perform experiments on the same datasets the other papers
have used. Although our identity matrix based feature set
shows better performance, we use the same feature set used
by other methods. We do not use identity matrix based feature
set to make the comparison consistent and fair. Splitting of
the training, validation and test sets are also done in the same
manner. arxiv is a citation network with 169, 343 nodes and
1, 166, 243 edges [39]. Our model shows comparable perfor-
mance with the base GCN [9] and GraphSAGE [10] shown in
Table IX.We also test our model on another dataset PPI [10],
a biological network with 56, 944 nodes and 818, 716 edges.
F1 Score has been reported in [10]. We get better F1 Score
given in Table IX. We use Mini-batch Gradient Descent for
our model for the performance comparison for both datasets.

E. Model Performance Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

p2p-Gnutella31 road-usroads email-Enron cit-hepPh slash-dot DBLP human-BNU

Sp
ee

d-
up

Networks

CPU 1 GPU 2 GPUs

Fig. 6: Speed-up of our model for best performance on GPUs
over CPUs. 4× speed-up is observed using 2 GPUs over CPUs

We choose the largest graphs from each types of networks
and evaluate their performance in different computing envi-
ronment. As, node-based graph feature set does not perform
better compared to the identity matrix feature set, we show
the model performance for the identity matrix only. For the
largest graph in terms of vertices, with 0.3 Million nodes, the
model takes around 3.7 hrs to run on CPUs whereas around
1 hr on GPUs. In case of the largest graph considering edges
(15.7 Million), the time required on CPUs is 1.1 hours and 0.7
hours on GPUs. While considering the experiments done on
CPUs, we have used a single node of the computing cluster
comprising of 20 processing cores. No parallel mechanism
has been applied for the CPU computations. From Figure 6
we see that we get around 2.5× speedup using 1 GPU and
4× speedup using 2 GPUs over CPUs.

VI. CONCLUSION

Semi-supervised learning for community detection is very
useful for large-scale networks where detecting communities
is computationally expensive and we have access to a few
labelled data. Based on the limited information, we can detect

5246

communities of the full network via semi-supervised learning.
Our semi-supervised classification model shows an accuracy
of up to 86.9% , and 0.85 F1 score for identity matrix based
feature set. Node-based graph feature set does not perform
equally as the identity matrix based feature set but can be used
when the memory is limited and the accuracy of the model
can be relaxed a bit. We make our model scalable for larger
datasets using Mini-batch Gradient Descent resolving the
memory issue of GCN. We experiment on 7 different domains
of real-world networks and see how our model performs for
each of the domains. We have included large-scale datasets
in our experiments compared to the smaller datasets used
by other related work in literature. We compare our model
with the state-of-the-art methods and achieve comparable
performance. Our model shows 4× speedup using 2 GPUs
over CPUs.

ACKNOWLEDGMENT
This work has been partially supported by Louisiana Board

of Regents RCS Grant LEQSF (2017-20)-RDA-25 and Uni-
versity of New Orleans ORSP SCORE award 2019. We also
thank the anonymous reviewers for the helpful comments and
suggestions to improve this paper.

REFERENCES

[1] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[2] N. S. Sattar and S. Arifuzzaman, “Overcoming mpi communication
overhead for distributed community detection,” in Workshop on Software
Challenges to Exascale Computing. Springer, 2018, pp. 77–90.

[3] A. Lancichinetti and S. Fortunato, “Community detection algorithms:
a comparative analysis,” Physical review E, vol. 80, no. 5, p. 056117,
2009.

[4] S. Arifuzzaman and B. Pandey, “Scalable mining, analysis, and
visualization of protein-protein interaction networks,” International
Journal of Big Data Intelligence (IJBDI), vol. 6, no. 3/4, pp. 176–187,
2019. [Online]. Available: https://doi.org/10.1504/IJBDI.2019.100884

[5] S. Arifuzzaman, M. Khan, and M. Marathe, “Fast parallel algorithms
for counting and listing triangles in big graphs,” ACM Trans. Knowl.
Discov. Data (TKDD), vol. 14, no. 1, pp. 5:1–5:34, 2019. [Online].
Available: https://doi.org/10.1145/3365676

[6] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[8] N. S. Sattar, S. Arifuzzaman, M. F. Zibran, and M. M. Sakib, “Detecting
web spam in webgraphs with predictive model analysis,” in 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 2019.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[10] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[11] N. S. Sattar and S. Arifuzzaman, “Data parallel large sparse deep neural
network on gpu,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2020, pp. 1–9.

[12] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” in Advances in neural
information processing systems, 2017, pp. 6530–6539.

[13] S. Rhee, S. Seo, and S. Kim, “Hybrid approach of relation network
and localized graph convolutional filtering for breast cancer subtype
classification,” arXiv preprint arXiv:1711.05859, 2017.

[14] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 7370–7377.

[15] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
arXiv preprint arXiv:1711.04043, 2017.

[16] X. Wang, Y. Ye, and A. Gupta, “Zero-shot recognition via semantic em-
beddings and knowledge graphs,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 6857–6866.

[17] S. Bhowmick and S. Srinivasan, “A template for parallelizing the louvain
method for modularity maximization,” in Dynamics On and Of Complex
Networks, Volume 2. Springer, 2013, pp. 111–124.

[18] C. L. Staudt and H. Meyerhenke, “Engineering parallel algorithms
for community detection in massive networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 1, pp. 171–184, 2015.

[19] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[20] N. S. Sattar, “Scalable community detection using distributed louvain
algorithm,” 2019.

[21] N. S. Sattar and S. Arifuzzaman, “Parallelizing louvain algorithm:
distributed memory challenges,” in 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing (DASC). IEEE, 2018,
pp. 695–701.

[22] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” IEEE transactions on
knowledge and data engineering, vol. 20, no. 2, pp. 172–188, 2007.

[23] Z. Chen, X. Li, and J. Bruna, “Supervised community detection with
line graph neural networks,” arXiv preprint arXiv:1705.08415, 2017.

[24] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent
importance sampling for training deep and large graph convolutional
networks,” in Advances in Neural Information Processing Systems, 2019,
pp. 11 249–11 259.

[25] O. Shchur and S. Günnemann, “Overlapping community detection with
graph neural networks,” arXiv preprint arXiv:1909.12201, 2019.

[26] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.

[27] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[29] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source soft-
ware for exploring and manipulating networks,” in Third international
AAAI conference on weblogs and social media, 2009.

[30] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[32] “The world’s most popular data science platform,”
=https://www.anaconda.com/.

[33] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al., “Api design
for machine learning software: experiences from the scikit-learn project,”
arXiv preprint arXiv:1309.0238, 2013.

[34] S.-l. D. Scikit, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[35] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable
static and dynamic community detection using grappolo,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2017, pp. 1–6.

[36] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarria-Miranda, A. Khan, and A. Gebremedhin, “Distributed
louvain algorithm for graph community detection,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018, pp. 885–895.

[37] “Rectifier (neural networks),” =https://en.wikipedia.org/wiki/Rectifier
(neural networks), Sep 2015.

[38] “Documentation — user guides — qb2,”
http://www.hpc.lsu.edu/docs/guides.php? system=QB2.

[39] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

