
Parallelizing Louvain Algorithm: Distributed Memory Challenges

Naw Safrin Sattar and Shaikh Arifuzzaman

Department of Computer Science
University of New Orleans, New Orleans, LA 70148 USA

Email: {nsattar, smarifuz}@uno.edu

Abstract—Louvain algorithm is a well-known and efficient
method for detecting communities or clusters in social and
information networks (graphs). The emergence of large net-
work data necessitates parallelization of this algorithms for
high performance computing platforms. There exist several
shared-memory based parallel algorithms for Louvain method.
However, those algorithms do not scale to a large number of
cores and large networks. Distributed memory systems are
widely available nowadays, which offer a large number of
processing nodes. However, the existing only MPI (message
passing interface) based distributed-memory parallel imple-
mentation of Louvain algorithm has shown scalability to only
16 processors. In this paper, we implement both shared- and
distributed-memory based parallel algorithms and identify
issues that hinder scalability. In our shared-memory based
algorithm using OpenMP, we get 4-fold speedup for several
real-world networks. However, this speedup is limited only by
the physical cores available to our system. We then design a
distributed-memory based parallel algorithms using message
passing interface. Our results demonstrate an scalability to a
moderate number of processors. We also provide an empirical
analysis that shows how communication overhead poses the
most crucial threat for deisgning scalable parallel Louvain
algorithm in a distributed-memory setting.

Keywords-community detection; Louvain algorithm; parallel
algorithm; distributed-memory; MPI; graph mining; social
networks

I. INTRODUCTION

A community or cluster in a network is a subset of nodes

where there are more inside connections than outside. Com-

munity detection [2], [6], [4] in networks is an important

problem in network (graph) mining. Large networks emerg-

ing from online social media and other scientific disciplines

make the problem of community deteciton very challenging.

For example, social networks Facebook and Twitter have bil-

lions of users [17], [18]. In the modern era of big data, deal-

ing with such large networks require parallel algorithms [12],

[13], [11], [14]. There exist both shared- and distributed-

memory based parallel algorithms. Scalability with shared-

memory based systems is usually limited by the moder-

ate number of available cores, whereas with distributed-

memory sytems, it is possible to utilize a large number

of processing nodes [1]. Conventional multi-core processors

can exploit the advantages of shared-memory based parallel

programming. Increasing physical cores gets limited due

to the scalable chip size restriction. Shared global address

space size is also limited because of memory constraint.

On the contrary, distributed-memory based parallelism has

the freedom of communication among processing nodes

through passing messages. Implementation of distributed-

memory based algorithms is challenging considering the

need for an efficent communication scheme. In this paper,

first, we figure out the limitations of shared-memory based

parallelism of Louvain algorithm for community detection.

We then develop an MPI based parallel Louvain algorithm

and identify the challenges to scalability. Finally, we propose

a novel solution to increase speedup factors for parallel

Louvain algorithm in a distributed setting.

II. RELATED WORKS

The problem of detecting communities in networks has

a long history [15], [2], [4], [6], [16], [19], [20]. As

identifed in [15], Louvain algorithm [2] is one of the efficient

sequential algorithms. However, sequential algorithms are

unsuitable to process large networks with millions to billions

of nodes and edges in a reasonable amount of time [13].

Thus, in recent years, there has been a shift of focus

towards the development of parallel algorithms. There exist

several parallel algorithms based on Louvain method [3], [5],

[6]– most of those algorithms are based on shared-memory

systems. Not many work has been done for distributed-

memory systems.

A template has been proposed to parallelize the Louvain

method for modularity maximization with a shared-memory

parallel algorithm in [3] using OpenMP. Maximum modular-

ity has been found by parallel reduction. The paper combines

communities to supervertices using parallel mergesort. The

authors run their experimental setup on two sets of LFR

benchmarks of 8,000 and 10,000 vertices which are small

numbers compared to large real-world networks [10]. In [5],

another shared-memory implementation is provided using a

hierarchical clustering method with adaptive parallel thread

assignment. The authors have showed the granularity of

threads could be obtained adaptively at run-time based on

the information to get the maximal acceleration in the

parallelization of Louvain algorithm. They have computed

the gained modularity of adding a neighbor node to the

community by assigning some threads in parallel. Dynamic

thread assignment of OpenMP has been disabled to let the

algorithm adaptively choose the number of threads. For upto

695

2018 IEEE 16th Int. Conf. on Dependable, Autonomic & Secure Comp., 16th Int. Conf. on Pervasive Intelligence &
Comp., 4th Int. Conf. on Big Data Intelligence & Comp., and 3rd Cyber Sci. & Tech. Cong.

978-1-5386-7518-2/18/$31.00 ©2018 IEEE
DOI 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122

32 cores, the speedup is not significant compared to the

previous implementations, e.g., PLM [6] [7] and CADS [8].

To the best of our knowledge, the only MPI based

distributed-memory algorithm is proposed in [4]. The net-

work is partitioned using PMETIS . The work parallelizes

only the first level of Louvain algorithm and peforms se-

quential execution for the later levels. Each MPI process

locally ignores cross-partition edges, which decreases the

quality of the detected communities. The authors use three

different vertex ordering strategies but none of those are

effective enough in terms of improving the performance of

the algorithm. Although the paper demonstrates scalability

up to only 16 to 32 processors.

III. PRELIMINARIES

Notations, definitions, and computational model used in

this paper are described below.

A. Notation

The network is denoted by G(V,E), where V and E
are the sets of vertices and edges, respectively. Vertices are

labeled as V0, V1, , Vn−1. We use the words node and

vertex interchangeably, same for links and edges. P is the

number of processors used in the computation, denoted by

P0, P1, , PN−1, where 0, 1, 2, , N − 1 refers to the

rank of a processor. Terms frequently used throughout the

paper are enlisted in Table I.

Table I: Terminologies used in the paper

Symbol Meaning

G(V,E)
Graph network with V = set of vertices and E = set of
edges

in [c] Sum of the weights of the links inside community c

tot [c]
Sum of the weights of the links incident to vertices in
community c

n2c [i] Community label of vertex i
d(i,c) Number of links from vertex i to community c

N Total number of processors (World size)

n = |V | Total number of vertices (Network size)

B. Louvain Algorithm for Community Detection

Louvain is a simple, heuristic method to extract the

community structure of large networks based on modularity

optimization [2]. It outperforms all other known community

detection method in terms of computation time and quality

of the detected communities [15]. Modularity Q is calculated

using Equation 1, where −1 < Q < 1. The meanings

for different quantities are described in Table II. Louvain

algorithm is divided in two phases, which are iteratively

repeated .

Q =
1

2m

∑
ij

[
Aij − kikj

2m

]
δ (cicj) (1)

Table II: Symbols used for calculating Modularity in Equa-

tion 1 and Equation 2

Symbol Meaning
Q Modularity

A Usual adjacency matrix

Aij Link weight between nodes i and j

m Total link weight in the network

ki Sum of the link weights attached to node i

ki
2m

Average fraction of weight that would be assigned to node
j, if node i assigned its link weight randomly to other nodes
in proportion to their own link weights

Aij −
kikj

2m

How strongly nodes i and j are connected in the real network,
compared to how strongly connected we would expect them
to be in a random network

ci Community to which node i is assigned

δ (ci, cj)
Kronecker delta. Value is 1 when nodes i and j are assigned
to the same community. Otherwise, the value is 0

ΔQ Gain in Modularity∑
in Sum of the weights of the links inside community C

∑
tot

Sum of the weights of the links incident to nodes in com-
munity C

ki,in sum of the weights of the links from node i to nodes in C

1) First Phase : For each node i the neighbours j of i are

considered and the gain in modularity, ΔQ that would take

place by removing i from its community and by placing it

in the community of j is evaluated. ΔQ obtained by moving

an isolated node i into a community C is computed using

Equation 2.

ΔQ =

[∑
in +ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(

ki
2m

)2
]

(2)

The symbolic meanings are given in Table II. When i is

removed from its community C a similar equation is used.

This continues repeatedly until no further improvement is

achieved. This phase comes to an end when a local maxima

of the modularity is attained.

2) Second Phase: In this phase, a new network is formed

whose nodes are the communities found during the first

phase. The weights of the links between two new nodes are

given by the sum of the weight of the links between nodes in

the corresponding two communities. Links between nodes of

the same community lead to self-loops for this community

in the new network.

After completion of second phase, the first phase of the

algorithm is reapplied to the resulting weighted network and

iteration continues as long as positive gain in modularity is

achieved.

C. Computational Model

At first, we develop shared-memory based parallel algo-

rithm using Open Multi-Processing (OpenMP) to eliminate

696

the limitations of [3] with a different approach. Shared-

memory based algorithms have some own limitations due

to limited number of physical processing cores hindering

high speedup. Therefore, we develop parallel algorithm for

message passing interface (MPI) based distributed-memory

parallel systems, where each processor has its own local

memory. The processors do not have any shared memory,

one processor cannot directly access the local memory

of another processor, and the processors communicate via

exchanging messages using MPI.

IV. METHODOLOGY

A. Overview of the Shared-Memory Algorithm

In our shared memory implementation, we parallelize the

Louvain algorithm computational task-wise in a straight-

forward approach. Whenever there is a need to iterate over

the full network or even the neighbors of a node, considering

the large network size, the work is done by multiple threads

to minimize the workload and do the computation faster.

B. Overview of the Distributed-Memory Algorithm

Our aim is to compute the communities of the full

network in a distributed manner. To serve the purpose,

we distribute the full network among the processors in a

balanced way, so that each processor can do its computation

in a reasonable time and no one should wait for another. It

is necessary because after each level of computation, they

have to communicate with the root processor to generate the

modularity of the full network. After each level of iteration,

the network size decreases gradually and when the network

size is considerably small, the final level is computed by a

single processor which acts similar to the Louvain Sequential

Algorithm.

1) Graph Partitioning : Let N be the number of proces-

sors used in the computation. The network is partitioned into

N partitions, and each processor, Pi is assigned one such

partition Gi(Vi, Ei). Processor Pi performs computation on

its partition Gi. The network data is given as input in a

single disk file. While partitioning G(V,E), if the vertex-id

does not start with 0, then the vertices are renumbered from

0 to ni − 1. The network is partitioned depending on the

number of vertices of the network such that each processor

gets equal number of vertices. N can vary depending on

the system configuration and available resources. n is also

of varied range. So, we cannot divide the vertices equally

among processors when n mod N ! = 0 We distribute the

remaining nodes starting with processor P0 and continue

up to processor Pk(0 <= k < N), as long as the

remainder lasts. Each processor has its own part of the

network necessary to compute the communities in the partial

network. It is a very naive partitioning technique.

2) Community Detection: We have parallelized the se-

quential algorithm in such a way that each processor can

compute its partial network‘s community with minimized

communication among the processors. The following infor-

mation are needed for each processor to complete its part of

computation.

• Degree of each vertex within the partition

• Neighbors of each vertex

• Weight associated with each neighbor

In first phase, each processor scans through all neighbor-

ing vertices and identifies those in different processors. It

then gathers the mentioned information by message pass-

ing among those processors. Then each processor locally

computes the modularity of the partial network and does

community detection. After computation, it sends informa-

tion of each vertexs community to the processor acting as

the root. The Root processor needs the value of in, tot arrays

and total weight of the network to compute modularity of

the full network. This full process is iterated several times

as long as there is increase in modularity.

The output is stored as (node,community) for each level of

iteration. It is also stored in an adjacency matrix format by

which the graph can be visualized using Python‘s networkx
library.

Algorithm 1 represents the pseudo-code of our approach.

All the steps from Section IV-B2a to IV-B2f are done for

each level of computation and repeated as long as we get

increase in modularity value.

Algorithm 1: Parallel Louvain using MPI

Data: Input Graph G(V,E)

Result: (Vertex, Community) Pair

1 while increase in modularity do
2 G (V, E) is divided into p processes;

3 Each graph i.bin contains
⌈
n
p

⌉
vertices and

corresponding edges in adjacency list format;

4 for Each processor Pi (executing in parallel) do
5 Gather Neighbour Info();

6 Compute Community();

7 Exchange Updated Community();

8 Resolve Community Duality();

9 Exchange Duality Resolved Community();

10 Find Unique Communities();

11 Compute Modularity();

12 Generate NextLevel Graph();

13 if number of communities < i then
14 i← number of communities

2 ;

15 end
16 end
17 end

697

a) Collection of Neighbour Information: Each proces-

sor Pi reads the input graph and initialize the arrays tot,
in and n2c. Pi then scans through the neighbor list of all

vertices and finds out the neighbors which do not belong

to current processor. So, each processor communicates with

other processors to collect degree and neighbor list with

weight of each vertex in the neighbor list for calculation

in later steps.

b) Local Community Update: Update of community

of each vertex locally is done in this step. Each processor,

Pi completes this step individually and locally updates the

community of the vertices belonging to it and does not

require any communication with other processors. A random

vertex, v is chosen from the list of vertices. Then, the

set of neighboring communities of v is computed with the

information from Section IV-B2a. The number of links from

v to all its neighboring community is computed and stored.

Next, v is removed from its current community, Cold. Now,

the modularity gain is calculated for all of its neighboring

communities. If gain is positive, and the gain is maximum

for community, C, then v‘s community is updated to C.

Otherwise, v gets back to Cold. These remove() and insert()

operations update the in and tot arrays implicitly. As, each

processor is locally updating the community, we need to

keep trace if C belongs to processor Pi or not. If C belongs

to another processor, Pj , we simply store vcomm = C and

vlink = dv,C where dv,C= number of links from vertex v
to community C for using in section IV-B2c. Selection of

vertex continues until all vertices from the list of vertices

are covered.

c) Global Community Update: In this step, the update

of community is done globally among all processors. Now,

Processor, Pi sends Processor, Pj the following data:

• Vertex, v belonging to Processor Pi

• v‘s community, C belonging to Processor Pj

• dv,C
• Number of self-loops of v
• Weighted degree of v

Pimsg−−→Pj ; v ∈ Pi, C ∈ Pj

msg � v, C, dv,C , vself−loop, vweighted−degree

Upon receiving the data, the v is inserted to its community

C and this insertion updates in and tot arrays internally.

d) Resolving Community Duality: There remains an

inconsistency to calculate the total number of communities

in the full network. If vertices a and b belong to the same

community, the community-label can be either a or b. The

community-label does not have any effect on the result.

But in current scenario, same community will be counted

twice as a changes its community to b and vice-versa.

To eliminate this problem, we keep the higher-number-

labelled communities and change the lower-number-labelled

communities to higher ones. If a > b, vertex a’s community

is changed again to a and vertex b retains its community a.

If vertices a and b belong to different processors, com-

munication among processors is required to circulate the

update. We update the vertices‘ communities those belong

to current processor and track the communities those be-

long to other processors and communication is required.

Processor, Pi send to other processor, Pj the community-

id, communityold to get the updated community of that id.

Pj after receiving the message, sends back to Pi the current

community of communityold . After receiving info from

Pj , Pi updates the communities of the vertices those need

update. In this communication step, subsequent send-receive

is done.

Pimsg1−−−→Pj ;Pjmsg2−−−→Pi

msg1 � Community;Community ∈ Pj

msg2 � Community, n2c[Community]

e) Computation of Modularity: Each processor, Pi ,

where 0 <= i < N finds out all the unique commu-

nities by iterating over all of its vertices belonging to it.

To calculate total unique communities in the world, each

Processor, Pk, where (1 <= k < N) sends its unique

community list to root processor, P0. P0 then merges all

the unique communities received from each processor, Pk

and eliminates duplicate ones. Pk also sends to P0 values

calculated from in, tot arrays and total weight of graph-

partition for calculation of modularity of the full network.

f) Generation of Next Level Graph: This step is per-

formed by only the root processor, P0. P0 renumbers the

communities from 0 to Z − 1 to formulate the new input

graph to be used for next level.

Z = Total number of unique communities after merging

and eliminating duplicate.

So, Z is the number of vertices for input graph of next

level. The connectivity of edges and corresponding weights

are calculated from available data and the new graph is

generated.

V. EXPERIMENTAL SETUP

A. Environment

We use Louisiana Optical Network Infrastructure (LONI)

QB2 compute cluster to perform all the experiments. QB2

[9] is a 1.5 Petaflop peak performance cluster containing

504 compute nodes with over 10,000 Intel Xeon processing

cores of 2.8 GHz. We use up to 100 processors for most of

our experiments.

B. Dataset

We have used real-world networks from SNAP dataset

[10] as shown in Table III.

698

Table III: Datasets used in Experiment

Network Vertices Edges Description

email-Eu-core 1005 25,571
Email network from a large
European research institution

ego-Facebook 4039 88,234
Social circles (’friends lists’)
from Facebook

wiki-Vote 7115 103,689
Wikipedia who-votes-on-
whom network

p2p-Gnutella08 6301 20,777
A sequence of snapshots of
the Gnutella peer-to-peer file
sharing network for different
dates of August 2002

p2p-Gnutella09 8114 26,013
p2p-Gnutella04 10876 39,994
p2p-Gnutella25 22687 54,705
p2p-Gnutella30 36682 88,328
p2p-Gnutella31 62586 147,892

soc-Slashdot0922 82,168 948,464
Slashdot social network from
February 2009

com-DBLP 317080 1,049,866
DBLP collaboration (co-
authorship) network

VI. RESULTS

In our experimentation, network DBLP is the largest, so

we present our result for this network in most of the cases.

The experiments on other networks are omitted for brevity.

Many of them have similar characteristic and findings.

Figure 1 represents the speedup of the parallel algorithms.

Figure 1b shows poor speedup, whereas figure 1a shows a

relatively better speedup. For figure 1a, we get a speedup of

around 4. But the number of physical processing core being

20, we cannot leverage the productivity of shared-memory

based algorithm. Speedup increases as long as the maximum

number of physical cores is not reached. After this certain

point, speedup downgrades drastically. For figure 1b, we get

a speedup of around 1.5 for 30 processors. The speedup is

not high but can be increased if the communication overhead

of MPI can be overcome on which we are working further.

So, we analyze the results of MPI-based algorithm to find

out the bottlenecks to make the algorithm more efficient in

our future work.

Figure 2 delineates the time taken at every communi-

cation among the processors described in section IV-B2a,

IV-B2c, and IV-B2d. Communication time required in Sec-

tion IV-B2a, is independent of the number of processors.

Major portion of total time is spent in communication

in Section IV-B2d, as the time increases linearly. With

increasing number of processors, runtime increases. The

reason is the communication overhead among processors.

But for smaller number of processors, runtime is high too

because of dealing with higher number of vertices at each

processor. After a certain number of processors, runtime

starts increasing consistently. From Figure 2, we can see

that this optimum number of processor is in between 30-35.

Next, we vary network size keeping number of processor

constant (100 processors) to find out the relation between

network size and runtime shown in Figure 3. Communication

time required in Section IV-B2a, does not depend on the

size of network too. It does not follow any trend with

(a) Shared Memory

(b) Distributed Memory

Figure 1: Speedup factor of parallel Louvain for different

networks

increasing network size. So, we can conclude that the initial

communication time depends on the nature of the graph

rather than number of processor or network size. It depends

on the distribution of vertices in a graph. Again, time

required in section IV-B2c and IV-B2d, both are increasing

with network size. As a result, total runtime increases with

rising network size.

We have also figured out how the number of community

changes at each level of iteration. We label our first level as

L0 and subsequent ones as L1, L2, . . . For DBLP network,

from Figure 4a we find that in first level, L0, number

of community decreases more quickly with lower ranked

699

Figure 2: Runtime analysis of DBLP network for varied

number of processors

Figure 3: Runtime analysis for varied network size

(a) Initial Level

(b) Final Level

Figure 4: Number of communities at different level of

iteration

processors. The reason might be that with higher number of

processors, the vertices are scattered more than that of lower

number of processors. This tends to accumulating vertices

under communities much easier for lower ranked processors.

But Figure 4a shows that fewer communities are achieved at

final level with higher ranked processors. So, higher ranked

processors converge slow but lead to more accuracy.

Table IV: Percentage of Community Size for DBLP Network

Community
Size No. of Community Percentage (%)

Seq. Par. Seq. Par.
1 108877 108877 99.80 99.17

2−10 46 266 0.042 0.242

11−100 40 530 0.037 .483

101−1000 51 88 0.0467 0.080

1001−10000 82 25 0.075 0.023

10001−22000 3 2 0.0027 0.002

Another finding is that very large number of smaller com-

munities contribute to the growing number of communities

at the final level of computation. From Table IV we can see

that 99.80% communities are single-noded community for

sequential [2] implementation and for our implementation

the percentage is 99.17%.

VII. PERFORMANCE ANALYSIS

A. Comparison with Sequential Algorithm

Table V: Deviation of number of Communities

Network Number of Communities Deviation (%)
Sequential Parallel

wiki-Vote 1213 1216 0.042164441

com-DBLP 109104 109441 0.106282326

We have compared our algorithm with the sequential

version [2] to analyze the accuracy of our implementa-

tion. Deviation of community between sequential and our

implementation is represented in Table V. The deviation

is negligible compared to network size. Figure 5 shows

the comparison between sequential and parallel version of

DBLP network at different levels of iteration. For both

version, the number of community is within the range

109000-109500.

B. Comparison with Other Parallel Algorithms

Most parallel algorithms for Louvain method are imple-

mented using shared-memory approach. The work in [4] is

a distributed-memory oriented parallel Louvain algorithm.

They have parallelized their algorithm only on the first level

of Louvain algorithm and calculated later levels in sequential

manner. For larger networks, after reduction at first level,

the network size might not considerably decrease. In this

case, later levels also require parallelization. Our approach

is unique in the way that we have parallelized all levels of

the sequential Louvain algorithm compared to theirs. They

also get speedup for upto 16 processors that we can increase

upto 30-35 processors.

700

Figure 5: Community Comparison (Parallel Vs Sequential)

VIII. CONCLUSION AND FUTURE WORK

Although distributed-memory parallel algorithms have

many advantages over shared-memory based algorithms, the

challenges to implement an efficient MPI based parallel

Louvain algorithm are cumbersome. Our shared-memory

based implementaiton achieves up to 4-fold speedup, which

is limitated by the number of physical cores available to our

system. For distributed-memory algorithms, communication

overhead is introduced while exchanging local information

after each major computational task. Due to such overhead,

the power of parallelism cannot be fully utilized. In this

paper, we have identified the impediments in implementing

distributed-memory parallel algorithms for Louvain method.

Our distributed-memory parallel Louvain algorithm scales

up to 30 to 35 processors, which is larger than that of the

existing only distributed memory algorithm. However, the

number is still not large and we will work in future to

improve the scalability of our algorithms by further reducing

the communication overhead. An efficient load balancing

scheme is also desired to make the algorithm more scalable.

Further, in our future work, we paln to eliminate the effect of

small communities that hinder the detection of meaningful

medium sized communites. We will also investigate the

effect of node ordering (e.g., degree based ordering, k-

cores and clustering coefficients) on the performance of the

parallel Louvain alogorithm.

ACKNOWLEDGMENTS

This work has been partially supported by Louisiana

Board of Regents RCS Grant LEQSF(2017-20)-RD-

A-25 and University of New Orleans ORSP Award

CON000000002410.

REFERENCES

[1] J. McCalpin, ”Memory bandwidth and machine balance in cur-
rent high performance computers”, IEEE Technical Committee
on Computer Architecture Newsletter, 1995, pp. 19-25.

[2] V. Blondel, J. Guillaume, R. Lambiotte and E. Lefebvre,
”Fast unfolding of communities in large networks”, Journal
of Statistical Mechanics: Theory and Experiment, vol. 2008,
no. 10, p. P10008, 2008.

[3] S. Bhowmick and S. Srinivasan, A Template for Parallelizing
the Louvain Method for Modularity Maximization, in Dynam-
ics On and Of Complex Networks, Volume 2, Springer New
York, 2013, pp. 111124.

[4] C. Wickramaarachchi, M. Frincuy, P. Small and V. Prasannay,
”Fast Parallel Algorithm For Unfolding Of Communities In
Large Graphs”, in High Performance Extreme Computing
Conference (HPEC), 2014.

[5] M. Fazlali, E. Moradi and H. Tabatabaee Malazi, ”Adaptive
parallel Louvain community detection on a multicore plat-
form”, Microprocessors and Microsystems, vol. 54, pp. 26-34,
2017.

[6] C. L. Staudt and H. Meyerhenke, Engineering Parallel Algo-
rithms for Community Detection in Massive Networks, IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no.
1, pp. 171184, Jan. 2016.

[7] Cray Documentation Portal”, Pubs.cray.com. [Online]. Avail-
able: https://pubs.cray.com/content/S-3014/3.0.UP00/cray-
graph-engine-user-guide/community-detection-parallel-
louvain-method-plm.

[8] E. Moradi, M. Fazlali, and H. T. Malazi, Fast parallel com-
munity detection algorithm based on modularity, in 2015 18th
CSI International Symposium on Computer Architecture and
Digital Systems (CADS), 2015.

[9] ”Documentation — User Guides — QB2”, Hpc.lsu.edu.
[Online]. Available: http://www.hpc.lsu.edu/docs/guides.php?
system=QB2.

[10] ”Stanford Large Network Dataset Collection”,
Snap.stanford.edu. [Online]. Available: https://snap.stanford.
edu/data/index.html.

[11] S. Arifuzzaman and M. Khan, “Fast parallel conversion of
edge list to adjacency list for large-scale graphs,” in 23rd High
Performance Computing Symposium, 2015.

[12] S. Arifuzzaman, M. Khan, and M. Marathe, “A Space-
efficient Parallel Algorithm for Counting Exact Triangles in
Massive Networks,” in 17th IEEE International Conference on
High Performance Computing and Communications, 2015.

[13] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A
parallel algorithm for counting triangles in massive networks,”
in 22nd ACM International Conference on Information and
Knowledge Management, 2013.

[14] S. Arifuzzaman, M. Khan, and M. Marathe, “A fast parallel
algorithm for counting triangles in graphs using dynamic load
balancing,” in 2015 IEEE BigData Conference, 2015.

[15] S. Fortunato and A. Lancichinetti, “Community detection
algorithms: a comparative analysis,” in 4th International ICST
Conference on Performance Evaluation Methodologies and
Tools, 2009.

[16] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks,” PNAS, vol. 99, no. 12, pp.
7821–7826, June 2002.

[17] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a
social network or a news media?” in WWW, 2010.

[18] J. Ugander et al., “The anatomy of the facebook social graph,”
CoRR, vol. abs/1111.4503, 2011.

[19] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev. E,
vol. 70, p. 066111, Dec 2004.

[20] S. K. Usha Nandini Raghavan, Reka Albert, “Near linear
time algorithm to detect community structures in large-scale
networks,” CoRR, vol. abs/0709.2938, 2007.

701

