Logic Circuits

Chapter 2

Overview

- Many important functions computed with *straight-line programs*
 - No loops nor branches
 - Conveniently described with *circuits*
- Circuits are *directed acyclic graphs*
 - Characterized by *size* and *depth*
- Circuits where operations involved are Boolean are called *logic circuits*
Overview (cont.)

- Circuits where operations involved are algebraic are called **algebraic circuits**
- Circuits where operations involved are comparisons are called **comparator circuits**
- **Logic circuits** are basic building blocks of real-world computers
- All machines with bounded memory can be built from logic circuits and binary memory units

Overview (cont.)

- Machines that perform finite-step computation can be simulated by logic circuits
- Chapter discusses:
 - Circuits vis-à-vis straight-line programs
 - Class of functions computed by logic circuits
 - Circuit designs for a number of important functions
 - Important results about Boolean functions and logic circuits
 - **Problem reduction** as a powerful tool of analysis
Designing Circuits

- Logic circuit
 - A directed, acyclic graph (DAG) whose vertices are labeled with Boolean functions (i.e., logic gates) or variables (i.e., inputs)
 - Computes a binary function
 \[f : \mathcal{B}^n \rightarrow \mathcal{B}^m \]
 where \(n \) is the number of input variables and \(m \) is the number of outputs in the circuit

Designing Circuits (cont.)

- A binary function
 \[f : \mathcal{B}^n \rightarrow \mathcal{B}^m \]

- Goal is to design efficient circuits
 - Small size (i.e., number of gates)
 - Small depth (i.e., length of longest path)
Designing Circuits (cont.)

- Logic circuits help provide framework for problem classification based on computational complexity
 - Used to identify hard computational problems such as \(\mathbf{P} \)-complete languages and \(\mathbf{NP} \)-complete languages (cf. Ch. 3)
- Show number of Boolean functions much greater than number of possible logic circuits of a given maximum size \(\Rightarrow \) most Boolean functions must be complex

Straight-line Programs and Circuits

- Example from text (cf. pp. 36-38):

 Functional description:

 \[
 \begin{align*}
 g_1 & := x; \\
 g_2 & := y; \\
 g_3 & := \neg g_1; \\
 g_4 & := \neg g_2; \\
 g_5 & := g_1 \land g_4; \\
 g_6 & := g_2 \land g_3; \\
 g_7 & := g_5 \lor g_6;
 \end{align*}
 \]

 Straight-line program:

 \[
 \begin{align*}
 (1 & \text{ READ } x) \\
 (2 & \text{ READ } y) \\
 (3 & \text{ NOT } 1) \\
 (4 & \text{ NOT } 2) \\
 (5 & \text{ AND } 1 4) \\
 (6 & \text{ AND } 3 2) \\
 (7 & \text{ OR } 5 6) \\
 (8 & \text{ OUTPUT } 5) \\
 (9 & \text{ OUTPUT } 7)
 \end{align*}
 \]
Straight-line Programs and Circuits (cont.)

- Formal definitions
 - **Definition 2.2.1**: A *straight-line program* is a set of steps each of which is an **input step**, denoted by $(s \text{ READ } x)$, or an **output step**, denoted by $(s \text{ OUTPUT } i)$, or a **computation step**, denoted by $(s \text{ OP } i \ldots k)$.

 Here s is the (ordinal) number of a step (allowing us to see the sequence by which the steps are to be executed).

 x denotes an input variable.

 The arguments $i \ldots k$ for an OP step must be less than s the step number of that OP step, *i.e.*, $s > i, \ldots, k$

Straight-line Programs and Circuits (cont.)

- Formal definitions (cont.)
 - **Definition 2.2.1**: A *circuit* is the graph of a straight-line program. The **fan-in** of a circuit is the maximum in-degree of any vertex. The **fan-out** is the maximum out-degree of any vertex. A **gate** is any vertex associated with a computation step (*i.e.*, an OP step).

 In our example, both **fan-in** and **fan-out** are equal to 2.

 The gates are those vertices representing the NOT, AND, and OR operations.
Definition 2.2.1: The \textit{basis} Ω of a circuit and its corresponding straight-line program is the set of operations that they use.

The bases of Boolean straight-line programs and logic circuits contain only Boolean functions.

The \textit{standard basis} Ω_0 is the set \{NOT, AND, OR\}.

Our example uses the standard basis.

Definition 2.2.2: Let g_s be the \textit{function computed by the s-th step of a straight-line program}.

If the s-th step is the input step (s \textsc{READ} x), then $g_s = x$.

If the s-th step is the computation step (s \textsc{OP} $i \ldots k$), then $g_s = \text{OP}(g_i, \ldots, g_k)$, where g_i, \ldots, g_k are the functions computed by steps $i \ldots k$.

If a straight-line program has n inputs and m outputs, it computes a function $f : \mathcal{B}^n \rightarrow \mathcal{B}^m$. If s_1, s_2, \ldots, s_m are the output steps, then $f = (g_1, g_2, \ldots, g_m)$.

The function computed by a circuit is the function computed by the corresponding straight-line program.
Functions Computed by Circuits (cont.)

- Example from text (cf. pp. 36-38):

<table>
<thead>
<tr>
<th>Straight-line program:</th>
<th>Functions computed by circuit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 READ x)</td>
<td>$g_1 := x$;</td>
</tr>
<tr>
<td>(2 READ y)</td>
<td>$g_2 := y$;</td>
</tr>
<tr>
<td>(3 NOT 1)</td>
<td>$g_3 := \neg x$;</td>
</tr>
<tr>
<td>(4 NOT 2)</td>
<td>$g_4 := \neg y$;</td>
</tr>
<tr>
<td>(5 AND 1 4)</td>
<td>$g_5 := x \land \neg y$;</td>
</tr>
<tr>
<td>(6 AND 3 2)</td>
<td>$g_6 := y \land \neg x$;</td>
</tr>
<tr>
<td>(7 OR 5 6)</td>
<td>$g_7 := (x \land \neg y) \lor (y \land \neg x)$;</td>
</tr>
<tr>
<td>(8 OUTPUT 5)</td>
<td></td>
</tr>
<tr>
<td>(9 OUTPUT 7)</td>
<td>$f(x,y) = (g_5, g_7)$</td>
</tr>
</tbody>
</table>

Fig. 2.1

Circuits That Compute Functions

- Given a circuit, we know how to determine the function it computes.
- Given a function, how do we construct a circuit (and straight-line program) that computes it?
 - Method involves following steps:
 - Construct functional table
 - Express in normal form, can be transformed directly into a circuit
 - Simplify to reduce circuit complexity
Example: $f: B^3 \rightarrow B^2$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Express output in disjunctive normal form (DNF):

$y_1 = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land x_3)$

$y_2 = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land x_3)$

Each of the terms can be realized by a simple circuit:

- Circuit that computes the function is made up of the OR’s of these components.
Circuits That Compute Functions (cont.)

- Circuit that computes the function is made up of the or’s of these simpler components:

- **THEOREM 2.3.1** Every function \(f : \mathcal{X}^n \rightarrow \mathcal{X}^m \) can be realized by a logic circuit.

Circuit Complexity Measures

- **Definition 2.2.3**: The *size* of a logic circuit is the number of gates it contains. The *depth* is the number of gates on the longest path through the circuit.

 The *circuit size*, \(C_\Omega(f) \), and *circuit depth*, \(D_\Omega(f) \), of a Boolean function \(f \) are defined as the smallest size and smallest depth of any circuit, respectively, over the basis \(\Omega \) of \(f \).

- Clearly, it is desirable to be able to construct the smallest or most shallow circuit for a function –
 - If the circuit is small in size, the complexity of the function computed must also be modest
 - If the circuit is shallow in depth, the speed of computation tends to be faster when the circuit is physically realized
Other Normal Forms

- **Conjunctive Normal Form (CNF)**
 \[(\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)\]

- **Sum-Of-Products Expansion (SOPE)**
 \[x_1 \cdot x_2 \cdot x_3 \lor x_1 \cdot x_2 \cdot x_3\]

- **Product-Of-Sums Expansion (POSE)**
 \[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)\]

Due to the definitions of each, it can be shown that although the DNF and CNF for a Boolean function are unique, there can be more than one equivalent SOPE or POSE for the same function.

Other Normal Forms (cont.)

- **Ring-Sum Expansion**
 - EXCLUSIVE OR (\(\oplus\)) of a constant and products (\(\land\)) of **unnegated** variables of the function
 - Can be constructed from the DNF; since only one of the possible input combinations can present itself at any single time, the \(\lor\) can be replaced by the \(\oplus\)
 - Example:
 \[(\neg x_1 \land x_2 \land x_3) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3) \Rightarrow\]
 \[(x_1 \cdot x_2 \cdot x_3) \oplus (x_1 \cdot x_2 \cdot x_3) \oplus (x_1 \cdot x_2 \cdot x_3) =\]
 \[(x_1 \oplus 1) \cdot x_2 \cdot x_3 \oplus (x_2 \oplus 1) \cdot x_1 \cdot x_2 \cdot x_3 =\]
 \[x_1 \cdot x_2 \cdot x_3 \oplus x_2 \cdot x_3 \oplus x_1 \cdot x_2 \cdot x_3 \oplus x_2 \cdot x_3 \oplus x_1 \cdot x_3 \oplus x_1 \cdot x_2 \cdot x_3 =\]
 \[x_1 \cdot x_2 \cdot x_3 \oplus x_1 \cdot x_3 \oplus x_3\]
Other Normal Forms (cont.)

- **Comparison of Normal Forms**
 - RSE for a Boolean function is unique but is not necessarily the most compact representation
 - Some functions can be represented compactly in one form but not as compact in another
 - Example: Parity function \(f_P(x_1, \ldots, x_n) = 1 \) when an odd number of the \(n \) inputs is 1 and 0 otherwise
 \[
 \begin{align*}
 f_P(x_1, \ldots, x_n) &= (x_1 \land \neg x_2 \land \ldots \land \neg x_n) \lor (\neg x_1 \land x_2 \land \ldots \land x_n) \lor \ldots \lor \\
 &\ldots (\neg x_1 \land \neg x_2 \land \ldots x_n) \lor \ldots
 \end{align*}
 \]
 (DNF has \(2^{n-1} \) terms)
 - \(f_P(x_1, \ldots, x_n) = x_1 \oplus x_2 \oplus \ldots \oplus x_n \)
 (RSE has \(n \) terms)

Reduction Between Functions

- Common method to solve a new problem:
 - See if an existing solution can be applied to it
 - Called a “reduction” in complexity theory
- **Definition 2.4.1** A function \(f: \mathcal{A}^n \rightarrow \mathcal{A}^m \) is a reduction to the function \(g: \mathcal{A}^r \rightarrow \mathcal{A}^s \) through application of a function \(p: \mathcal{A}^s \rightarrow \mathcal{A}^m \) and \(q: \mathcal{A}^n \rightarrow \mathcal{A}^r \) if for all \(x \in \mathcal{A}^n \):
 \[
 f(x) = p(g(q(x)))
 \]
A simple reduction is the subfunction

Definition 2.4.2 Let g be a function $g : A^n \rightarrow A^m$. A subfunction f of g can be obtained by assigning values to some of the input variables of g, assigning variable names (not necessarily unique) to the rest of the input, deleting and/or permuting some of its output variables. We say the f is a reduction to g via the subfunction relationship.

Lemma 2.4.1 If f is a subfunction of g, a straight-line program for f can be created from a straight-line program for g without increasing the size nor depth of its circuit.
Example: Reduction of \textit{logical shift} function to \textit{cyclic shift} function

\[f^{(n)}_{\text{shift}} \rightarrow f^{(2n)}_{\text{cyclic}} \]

Example: Reduction of \textit{cyclic shift} function to \textit{logical shift} function

\[f^{(n)}_{\text{cyclic}} \rightarrow f^{(2n)}_{\text{shift}} \]
Reduction Between Functions (cont.)

- **Lemma 2.5.2** The *cyclic shift* function is a subfunction of the *logical shift* function and vice-versa.

- Circuits for important Boolean functions are presented in detail in text (not to be discussed)
 - Encoders and decoders
 - Multiplexers and demultiplexers
 - Arithmetic operations
 - Symmetric functions
 - Binary sorting function
 - Modulus functions

Most Boolean Functions Are Complex

- A Boolean function on n variables can be represented by a table with 2^n rows
 - Each entry can be filled with either a 1 or 0
 - There can be 2^n Boolean functions on n variables

- The number of logic circuits bounded by some limit on size is not as “explosive”.
 - Most Boolean functions cannot be realized by small circuits
Most Boolean Functions Are Complex

- Our first main result is given here with proof sketch:

THEOREM 2.12.1 Let \(0 < \epsilon < 1 \). The fraction of the Boolean functions \(f : B^n \rightarrow B \) that have size complexity \(C_{\omega_0}(f) \) satisfying the following lower bound is at least \(1 - 2^{-[\log_2(1 - \epsilon) / \epsilon]} \) when \(n \geq 2[(1 - \epsilon) / \epsilon] \log_2[(3\epsilon)^3(1 - \epsilon) / 2] \). (Here \(e \approx 2.71828 \ldots \) is Euler's constant.)

\[
C_{\omega_0}(f) \geq \frac{2^n}{n} (1 - \epsilon) - 2n^2
\]

- Count number of circuits realizable with \(g \) gates using the standard basis \(\Omega_0 \)
- Approximate upper bound to this count and use it to give an upper bound to number of circuits realizable with up to \(G \) gates
- Form ratio of this to total number of functions in \(n \) variables

Most Boolean Functions Are Complex (cont.)

- Our second main result is given here with yet another proof sketch:

THEOREM 2.12.2 For each \(0 < \delta < 1 \) a fraction of at least \(1 - 2^{-6\delta n} \) of the Boolean functions \(f^{(n)} : B^n \rightarrow B \) have depth complexity \(D_{\omega_0}(f) \) that satisfies the following bound when \(n \geq 5

\[
D_{\omega_0}(f) \geq n - \log \log n - O(1)
\]

- Simulate any circuit of depth \(d \) with an equivalent tree circuit with the same depth
- Count the number of distinct labeled tree circuits with depth \(d \) up to a given \(D \)
- Form ratio of this to total number of functions in \(n \) variables
Most Boolean Functions
Are Complex (cont.)

Most Boolean functions on \(n \) variables require circuits whose size and depth are approximately \(2^n/n \) and \(n \), respectively.

Upper Bounds on Circuit Size

- Every Boolean function on \(n \) variables can be realized with circuit size and depth close to the lower bounds derived previously
 - Every function \(f^{(n)} \) can be expressed in DNF
 - DNF can be realized by a circuit consisting of a circuit for a decoder function (to select a term in the DNF) and then a circuit for an OR tree
Upper Bounds on Circuit Size (cont.)

- From results in Sections 2.2.2 and 2.5.4:
 - Circuit size has the following upper bound:
 \[C_\Omega(f) \leq C_\Omega(f_{\text{decode}}) + 2^{n-1} \leq 3 \times 2^{n-1} + (2n-2)2^{n/2} \]
 - Circuit depth has the following upper bound:
 \[D_\Omega(f) \leq D_\Omega(f_{\text{decode}}) + n + 1 \leq n + \lceil \log_2 n \rceil \]

- **Theorem 2.13.1** The depth complexity of every Boolean function is \(O(n) \).

Upper Bounds on Circuit Size (cont.)

- By expressing an arbitrary Boolean function \(f \) on \(n \) variables \((x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_n)\) as a function of two sets of variables \((x_1, x_2, \ldots, x_k)\) and \((x_{k+1}, \ldots, x_n)\). We can express \(f \) using its **\((k,s)\)-Lupanov representation**
 - Circuit size has the following upper bound:
 \[C_{k,s}(f) \leq O(2^n/n^2) + O(2^n/n^3) + 2^n / (n-5 \log_2 n) \]

- **Theorem 2.13.2** The size complexity of every Boolean function is \(O(2^n/n) \).