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A group of students at the Department of Electrical Engineering University of Pennsylvania 
have designed "ENIAC(TM)-on-a-Chip", under supervision of Professor J. Van der Spiegel, 
in collaboration with Dr. F. Ketterer. This was done as part of Eniac's 50th Anniversary 
Celebration. They have integrated the whole "ENIAC" on a 7.44 by 5.29 sq. mm chip using a 
0.5 micrometer CMOS technology. 
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INTRODUCTION: MILESTONES IN THE DEVELOPMENT OF COMPUTERS 

 

Before 1900: First Computing Devices  
 
A number of early cultures have developed mechanical computing devices. For example, the 
abacus probably existed in Babylonia about 3000 B.C. The Chinese abacus is an excellent 
example, remaining unsurpassed in speed and accuracy of operation well into this century. 
This dominance of several thousand years is unequaled for a specific type of computer. 
Certainly our nowadays computers are unlikely to equal it. The classical abacus was called 
suan pan by the Chinese- which meant “counting” or “reckoning” board. Small beads of bone 
or ivory were strung on parallel bamboo runners and set into a rectangular frame. Each raw of 
these beads corresponded to one column of written numbers. It was an incredibly powerful 
tool for rapidly adding and subtracting large numbers. 
 
The ancient Greeks developed some very sophisticated analog machines. In 1901, an ancient 
Greek shipwreck was discovered off the island of Antikythera. Inside was a salt-encrusted 
device (now called the Antikythera mechanism) that consisted of rusted metal gears and 
pointers. When this c. 80 B.C. device was reconstructed, it produced a mechanism for 
predicting the motions of the stars and planets.  
 
The Romans used their hands to calculate. Because of their extremely cumbersome system of 
numbers, they evolved very elaborate “finger” arithmetic. 
 
Arabic numbering system that came originally from India had a big advantage over Roman 
numerals because of its concept of place value. One column stands for the ones, the next 
column for tens, next for hundreds, and so on. Take the problem of multiplying 
MMMCCCCLVIII (3458) by CCCCLIX (459). Employing the Arabic system, pen and paper, 
we could get answer in 30 seconds or so. By Roman method, even if we try our best waggling 
finger as fast as possible, it takes something like ten minutes!  
 
After classical antique come middle ages, with focus on completely different matters. No 
traces of any significant improvements in science. No new calculating devices either. 
 
It was Renaissance that brought the secular1 themes back to focus. 
 
As mathematicians expanded the boundaries of geometry, algebra and number theories, the 
outcry for help became greater and greater. 
 
John Napier (1550-1617), the Scottish inventor of logarithms, invented Napier's rods 
(sometimes called "Napier's bones") to simplify the task of multiplication. 
 
The first to really achieve any success with mechanical calculating machine was Wilhelm 
Schickard (1592-1635), a graduate of the University of Tübingen (Germany). A brief 
description of the device (that could add, subtract, multiply, and divide) is contained in two 
letters to Johannes Kepler. Unfortunately, at least one copy of the machine burned up in a fire, 
and Schickard himself died of bubonic plague in 1635, during the Thirty Years' War. So this 
invention was lost.  

                                                 
1 worldly, non-sacral 
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In 1641 the French mathematician and philosopher Blaise Pascal (1623-1662) built a 
mechanical adding machine “arithmetique”, a brass box the size of a loaf of bread, with eight 
dials on its face, that one operated by using stylus to input numbers. “Arithmetique” was less 
sophisticated than Schickard’s lost machine, and it could only add and subtract. 
 
Similar work was done by Gottfried Wilhelm Leibniz (1646-1716), but his device was capable 
of performing all four basic arithmetic operations. Leibniz also advocated use of the binary 
system for doing calculations. 
 
Up until the dawn of the 19th century, the attempts to extend the human mind were limited to 
manually operated devices. The abacus, Pascal’s “arithmetique”, Leibniz’s Wheel- they all 
required an operator who did each step in sequence. 
 
Yet concept of programming was not that new. Music boxes clocks and various automata had 
made use of programming principle for hundreds of years. 
 
Joseph-Marie Jacquard (1752-1834) invented a loom that could automate textile 
manufacturing and weave complicated patterns described by holes in punched cards.  
 
Charles Babbage (1791-1871) worked on two mechanical devices: the Difference Engine and 
the far more ambitious Analytical Engine (a predecessor of the modern digital computer), but 
neither worked satisfactorily. He envisioned a steam-powered machine with two major parts. 
The first was a “mill” to perform arithmetical operations (a “central processing unit”). The 
second was a “store” to manage variables and retain the answers to problems solved 
(“memory”). Babbage intended to use Jackard’s system of punched cards to program the 
machine. 
 
One of Babbage's friends, matematician Ada Augusta Byron, Countess of Lovelace (1815-
1852), sometimes called the "first programmer" has written on Babbage's machine. The 
programming language Ada was named for her. 
 
William Stanley Jevons (1835-1882), a British economist and logician, built a machine in 
1869 to solve logic problems. It was "the first such machine with sufficient power to solve a 
complicated problem faster than the problem could be solved without the machine's aid." 
(Gardner) It is now in the Oxford Museum of the History of Science. 
 
Herman Hollerith (1860-1929) invented the modern punched card (inspired by Jacquards 
solution) for use in a machine he designed to help tabulate the American 1890 census. 
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1900 – 1939 The Rise of Mathematics 

 
In 1928, the German mathematician David Hilbert (1862-1943) addressed the International 
Congress of Mathematicians. He posed among others following three fundamental questions: 

•  Is mathematics complete; i.e. can every mathematical statement be either proved or 
disproved?  

•  Is mathematics consistent, that is, is it true that statements such as "0 = 1" cannot be 
proved by valid methods?  

•  Is mathematics decidable, that is, is there a mechanical method that can be applied to any 
mathematical assertion and (at least in principle) will eventually tell whether that assertion 
is true or not? This last question was called the Entscheidungsproblem. 

 
In 1931, Kurt Gödel (1906-1978) answered two of Hilbert's questions. He showed that every 
sufficiently powerful formal system is either inconsistent or incomplete. Also, even if an 
axiom system is consistent, this consistency cannot be proved within itself. The third question 
remained open, with 'provable' substituted for 'true'. 
 
In 1936, Alan Turing (1912-1954) provided a solution to Hilbert's Entscheidungsproblem by 
conceiving a formal model of a computer - the Turing machine - and showing that there were 
problems that a machine could not solve. One such problem is the so-called "halting 
problem": given a program, does it halt on all inputs? 
 
 

1940's: First Electronic Digital Computer 
 
The World War II urged the development of the general-purpose electronic digital computer 
for ballistics calculations. At Harvard, Howard H. Aiken (1900-1973) built the Mark I 
electromechanical computer in 1944, with the assistance of IBM. 
 
Military code-breaking also led to computational projects. Alan Turing was involved in the 
breaking of the code behind the German machine, the Enigma, at Bletchley Park in England. 
The British built a computing device, the Colossus, to assist with code-breaking. 
 
At Iowa State University in 1939, John Vincent Atanasoff (1904-1995) and Clifford Berry 
designed and built an electronic computer for solving systems of linear equations, but it never 
worked properly. 
 
John William Mauchly (1907-1980) with J. Presper Eckert, Jr. (1919-1995), designed and 
built the ENIAC, a general-purpose electronic computer originally intended for artillery 
calculations. The ENIAC was built at the Moore School at the University of Pennsylvania, 
and was finished in 1946. 
 
In 1944, Mauchly, Eckert, and John von Neumann (1903-1957) were designing a stored-
program electronic computer, the EDVAC. Von Neumann's report, "First Draft of a Report on 
the EDVAC", was very influential and contains many of the ideas still used in most modern 
digital computers, including a merge sort. Eckert and Mauchly went on to build UNIVAC. 
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Maurice Wilkes (b. 1913), working in Cambridge, England, built the EDSAC, a computer 
based on the EDVAC. F. C. Williams (b. 1911) and others at Manchester University built the 
Manchester Mark I, one version of which was working as early as June 1948. This machine is 
sometimes called the first stored-program digital computer. 
 
The invention of the transistor in 1947 by Bardeen, Brattain, and Shockley transformed the 
computer and made the microprocessor revolution possible. For this discovery they won the 
1956 Nobel Prize in physics.  
 
Jay Forrester (b. 1918) invented magnetic core memory 1949.  
 
 

1950's 
 
Grace Murray Hopper (1906-1992) conceived of the idea of a compiler, in 1951. She even 
invented the language APT.2  
 
John Backus and others developed the first FORTRAN compiler in April 1957.  
 
LISP, a list-processing language for artificial intelligence programming, was invented by John 
McCarthy about 1958. Alan Perlis, John Backus, Peter Naur and others developed Algol. 
 
In hardware, Jack Kilby (Texas Instruments) and Robert Noyce (Fairchild Semiconductor) 
invented the integrated circuit in 1959. 
 
Edsger Dijkstra created an efficient algorithm for shortest paths in graphs as a demonstration 
of the ARMAC computer in 1956. He also made an efficient algorithm for the minimum 
spanning tree in order to minimize the wiring needed for the X1 computer.  
 
 

1960's 
 
In the 1960's, computer science came into its own as a discipline. In fact, the term was coined 
by George Forsythe, a numerical analyst. The first computer science department was formed 
at Purdue University in 1962.  
 
Operating systems made major advances. Fred Brooks at IBM designed System/360. Edsger 
Dijkstra at Eindhoven designed the THE multiprogramming system. 
 
At the end of the decade, ARPAnet, a precursor to today's Internet, began to be constructed. 
 
Many new programming languages were invented, such as BASIC (developed c. 1964 by John 
Kemeny (1926-1992) and Thomas Kurtz (b. 1928)). 
 
The 1960's also saw the rise of automata theory and the theory of formal languages. Big 
names here include Noam Chomsky and Michael Rabin. Chomsky later became well-known 
for his theory that language is "hard-wired" in human brains. 
                                                 
2 Earlier, in 1947, Hopper was first to coine the word "computer bug". 
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Proving correctness of programs using formal methods also began to be more important in 
this decade. The work of Tony Hoare played an important role. Hoare also invented 
Quicksort. 
 
Ted Hoff and Federico Faggin at Intel designed the first microprocessor (computer on a chip) 
in 1969-1971. 
 
A rigorous mathematical basis for the analysis of algorithms began with the work of Donald 
Knuth, author of The Art of Computer Programming. 
 
 

1970's 
 
The theory of databases saw major advances with the work of Edgar F. Codd on relational 
databases.  
 
Unix, a very influential operating system, was developed at Bell Laboratories by Ken 
Thompson and Dennis Ritchie. Brian Kernighan and Ritchie together developed programming 
language C. 
 
Other new programming languages, such as Pascal (invented by Niklaus Wirth) and Ada 
(developed by a team led by Jean Ichbiah), appeared. 
 
The first RISC architecture was begun by John Cocke in 1975, at the Thomas J. Watson 
Laboratories of IBM. Similar projects started at Berkeley and Stanford around this time. 
 
The 1970's also bring the rise of the supercomputer. Seymour Cray designed the CRAY-1, 
which was first shipped in March 1976. It could perform 160 million operations in a second. 
Cray Research was taken over by Silicon Graphics. 
 
There were also major advances in algorithms and computational complexity. In 1971, Steve 
Cook published his seminal paper on NP-completeness, and shortly thereafter, Richard Karp 
showed that many natural combinatorial problems were NP-complete. Whit Diffie and Martin 
Hellman published a paper that introduced the theory of public-key cryptography. 
 
In 1979, three graduate students in North Carolina developed a distributed news server which 
eventually became Usenet. 
 
 

1980's 
 
This decade also saw the rise of the personal computer, thanks to Steve Wozniak and Steve 
Jobs, founders of Apple Computer. 
In 1981, the first truly successful portable computer was marketed, the Osborne I. In 1984, 
Apple first marketed the Macintosh computer. 
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1990's and Beyond 
 
Parallel computers continue to be developed. 
 
Biological computing, with the recent work of Len Adleman on doing computations via DNA, 
has great promise.  
 
Quantum computing gets a boost with the discovery by Peter Shor that integer factorization 
can be performed efficiently on a (theoretical) quantum computer. 
 
The "Information Superhighway" links more and more computers worldwide. 
 
Computers get smaller and smaller; the birth of nano-technology. 
 
To conclude this introductory historical overview we can note that the development of 
computing devices follows the needs of human civilization. In the beginning, computers were 
needed to solve practical problem of performing long and tedious calculations in a fast and 
reliable way.  
 
The era of focusing on algorithmic aspects of computing is coupled to the dominance of 
mathematicians, logicians and even physicists, as they were not only the first users of 
computers, but also, they were creating new concepts, designing and building new machines. 
 
More recent developments however opened entirely new areas of application for computers. 
Nowadays computers can be found virtually everywhere, and the majority of users are no 
longer scientists or technicians but “common people”. ‘That has as a consequence a new ever 
growing demand for improved graphic features (especially stimulated by the enormous 
market for computer games) even improved audio capabilities and user-friendly interface. The 
enormous expansion of Internet is one of the motors of progress for personal computers.  
 
Modern development doesn’t only include home-markets but also targets the professional 
segment that demands advanced data bases, expert systems, distributed parallel systems, and 
many more fields. 
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1 LEIBNIZ: LOGICAL CALCULUS 

 
 

Gottfried Wilhelm von Leibniz 
 

 
 

Born: 1 July 1646 in Leipzig, Saxony (now Germany) 
Died: 14 Nov 1716 in Hannover, Hanover (now Germany) 

 

G. W. Leibniz was born in Leipzig in 1646. His father, a professor of philosophy at the 
university of Leipzig, has died when child was six years old, and the boy was brought up by 
his mother. 

In his early teens Leibniz started studying Aristotle´s logic. What fascinated him the most was 
the Aristotelian division of concepts in categories. He was inspired to develop his own logical 
system based on alphabet whose elements would represent concepts.  

Starting from Aristotle Leibniz concieved of a universal artificial language to formulate 
propositions in which all human knowledge could be expressed, with “calculational” rules 
that would expose logical interrelationships among those propositions. He has remained under 
Aristotle´s spell the rest of his life. For his bachelor’s degree he wrote on Aristotelian 
metaphysics.  

His other field of interest was legal studies, so he obtained his second bachelor’s degree in 
law, dealing in his thesis with the use of systematic logic in legal matters. 

Leibniz made his first contribution to mathematic in his doctoral dissertation in philosophy. 
As a step towards the alphabet of concepts, he systematically studied complex arrangements 
made of basic elements, that he even continued to develop in a monograph “Dissertatio de 
Arte Combinatoria”. 
 
Leibniz had a great vision of really amazing scope. 

He has developed the notations for the differential and integral calculus that are still in use 
today, that made it easy to perform complicated calculations with help of simple and clear-cut 
rules. In his vision similar could be done for all human knowledge.  
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He also dreamed of machines capable of carrying out calculations, freeing the mind for 
creative thought: “For it is unworthy of excellent men to lose hours like slaves in the labor of 
calculation which could safely be relegated to anyone else if the machine were used.” 

Leibniz developed a machine that could not only add and subtract but also multiply, divide, 
and extract square roots. The Leibniz calculator was gear-operated, and it provided a carry 
from one order to the next.  
 

 
Figure 1 Leibniz´s calculating machine 

It is example of algebra that Leibniz cites constantly to show how a system of properly chosen 
symbols is useful and indeed crucial for deductive thought. 

 “Part of the secret of algebra consists of the characteristic, that is to say of the art of properly 
using the symbolic expressions. This care for proper use of symbols was to be the “thread of 
Ariadne” that would guide the scholar…” 

The seventeenth-century mathematics has two major developments that stimulated the 
development of mathematical research: 

•  Systematization of techniques dealing with algebraic expressions 

•  Reduction of geometry to algebra by representing points by pairs of numbers 
(Descartes, Fermat) 

Much of work has been done investigating limit processes, that is, searching approximate 
solutions that approach the exact solution in the limit. 

Following elegant expression is the Leibniz’s own result: 

...
11
1

9
1

7
1

5
1

3
11

4
+−+−+−=π  

That can be interpreted as the area of a circle with radius 
2
1 , expressed as infinite series of 

odd numbers alternately added and subtracted. 

Generally, finding areas of figures with curved boundaries was one kind of problems solved 
by limit processes. Another kind of problem was finding the rates of change, such as the 
varying speed. Leibniz recognized that mathematical operations required for calculation of 
those two types were inverse of each other (fundamental theorem of the calculus). Nowadays 
these operations are called integration (in Leibniz notation ∫ is actually modified “S”) and 
differentiation (in Leibniz notation “d” suggests “difference”). 
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Calculus Ratiocinator 

 “I am convinced more and more of the utility and reality of this general science, and I see 
that very few people have understood its extent…This characteristic consists of a certain 
script or language…that perfectly represents the relationships between our thoughts. The 
characters would be quite different from what has been imagined up to now. Because one has 
forgotten the principle that the characters of this script should serve invention and judgement 
as in algebra or arithmetic. This script will have great advantages, among others; there is one 
that seems particularly important to me. This is that it will be impossible to write, using these 
characters, chimerical notions (chimères) such as suggest themselves to us. An ignoramus will 
not be able to use it, or, in striving in doing so, he himself will become erudite. “3 

Leibniz saw his grand program as consisting of three major steps: 

1. Before the appropriate symbols could be selected, it would be necessary to create an 
information bank encompassing the full extent of human knowledge.  

2. Select the key underlying notions and provide appropriate symbols for each of them. 

3. Finally, the rules of deduction could be reduced to manipulations of these symbols. 
That is what Leibniz called a calculus ratiocinator and what nowadays might be called 
symbolic logic. 

 
For Leibniz nothing, absolutely nothing about the world was in any way undetermined or 
accidental; everything followed a plan, clear in the mind of God, by means of which he 
created the best world that can be created. Hence all aspects of the world were connected by 
links one could hope to discover by rational means. 

Leibniz really did attempts to produce calculus ratiocinator, as illustrated in following. 
 
DEFINITION 3. A is in L, or L contains A, is the same as to say that L can be made to 
coincide with a plurality of terms taken together of which A is one. B ⊕  N = L signifies that B 
is in L and that B and N together compose or constitute L. The same thing holds for larger 
number of terms. 

AXIOM 1. B ⊕  N = N ⊕  B. 

POSTULATE.  Any plurality of terms, as A and B, can be added to compose A ⊕  B. 

AXIOM 2.  A ⊕  A = A. 
PROPOSITION 5. If A is in B and A = C, then C is in B. 

PROPOSITION 6. If C is in B and A = B, then C is in A. 

PROPOSITION 7. A is A. 

(For A is in A ⊕  A (by Definition 3). Therefore (by Proposition 6) A is in A.) 

…. 

PROPOSITION 20. If A is in M and B is in N, then A ⊕  B is in M ⊕  N. 
Figure 2 Sample from one of Leibniz´s logical calculi 

                                                 
3 The letter from Leibniz to Jean Galloys, dated December 1678. 
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More than a century and a half ahead of his time, Leibniz proposed an algebra of logic, an 
algebra that would specify the rules for manipulating logical concepts in the manner that 
ordinary algebra specifies the rules for manipulating numbers. 

The idea was something like combining two collections of things into a single collection 
containing all of the items in either one. The most striking rule is Leibniz’s Axiom 2 that says 
that combining plurality of terms with itself yield nothing new. 

Language and Mind 
Some scholars have suggested that Leibniz should be regarded as one of the first thinkers to 
envision something like the idea of artificial intelligence.  
 
Whether or not he should be regarded as such, it is clear that Leibniz, like today’s cognitive 
scientists, saw an intimate connection between the form and content of language, and the 
operations of the mind. Indeed, according to his own testimony in the New Essays, he "really 
believe[s] that languages are the best mirror of the human mind, and that a precise analysis of 
the signification of words would tell us more than anything else about the operations of the 
understanding".  
 
This view of Leibniz’s led him to formulate a plan for a "universal language," an artificial 
language composed of symbols, which would stand for concepts or ideas, and logical rules for 
their valid manipulation. He believed that such a language would perfectly mirror the 
processes of logical human reasoning. It is this plan that has led some to believe that Leibniz 
came close to anticipating artificial intelligence.  
 
At any rate, Leibniz’s writings about this project (which, it should be noted, he never got the 
chance to actualize) reveal significant insights into his understanding of the nature of human 
reasoning. This understanding, it turns out, is not that different from contemporary 
conceptions of the mind, and many of his discussions bear considerable relevance to 
discussions in the cognitive sciences.  
 
According to Leibniz, natural language, despite its powerful resources for communication, 
often makes reasoning obscure since it is an imperfect mirror of comprehensible thoughts. As 
a result, it is often difficult to reason with the apparatus of natural language, "since it is full of 
innumerable equivocations". Perhaps this is because of his view that the terms of natural 
language stand for complex, or derivative, concepts - concepts which are composed of, and 
reducible to, simpler concepts.  
 
With this "combinatorial" view of concepts in hand, Leibniz notices "that all human ideas can 
be resolved into a few as their primitives". We could then assign symbols, or "characters," to 
these primitive concepts from which we could form characters for derivative concepts by 
means of combinations of the symbols. As a result, Leibniz tells us, "it would be possible to 
find correct definitions and values and, hence, also the properties which are demonstrably 
implied in the definitions".  
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The totality of these symbols would form a "universal characteristic," an ideal language in 
which all human concepts would be perfectly represented, and their constitutive nature 
perfectly transparent. He writes in The Art of Discovery that "there are certain primitive terms 
which can be posited, if not absolutely, at least relatively to us" The suggestion seems to be 
that even if we cannot provide a catalogue of absolutely primitive concepts, we can 
nevertheless construct a characteristic based on concepts which cannot be further resolved by 
humans.  

In addition to the resolution of concepts, and their symbolic assignments, Leibniz envisages 
the formulation of logical rules for the universal characteristic. He claims that "it is plain that 
men make use in reasoning of several axioms which are not yet quite certain" (The Method of 
Certitude and the Art of Discovery). Yet with the explicit formulation of these rules for the 
logical manipulation of the symbols - rules which humans use in reasoning - we would be in 
possession of a universal language which would mirror the relations between the concepts 
used in human reasoning.  

Indeed, the universal characteristic was intended by Leibniz as an instrument for the 
calculation of truths. Like formal logic systems, it would be a language capable of 
representing valid reasoning patterns by means of the use of symbols. Unlike formal logic 
systems, however, the universal language would also express the content of human reasoning 
in addition to its formal structure. In Leibniz’s mind, "this language will be the greatest 
instrument of reason," for "when there are disputes among persons, we can simply say: Let us 
calculate, without further ado, and see who is right" (The Art of Discovery).  

Judging from Leibniz’s plans for a universal language, it is clear that Leibniz had a specific 
view about the nature of human cognitive processes, particularly about the nature of human 
reasoning. According to this view, cognition is essentially symbolic: it takes place in a system 
of representations which possesses language-like structure.  

Indeed, it was Leibniz’s view that "all human reasoning uses certain signs or characters," (On 
the Universal Science: Characteristic) and "if there were no characters, we could neither 
think of anything distinctly nor reason about it" (Dialogue ). 

Add to this conception Leibniz’s view that human cognitive processes follow determinable 
axioms of logic, and the picture that emerges is one according to which the mind operates, at 
least when it comes to logical reasoning, by following implicit algorithmic procedures.  

Regardless of whether or not Leibniz should be seen as the pioneer of artificial intelligence, 
he did conceive of human cognition in essentially computational terms. In fact, as early as 
1666, remarking favorably on Hobbes’ writings, Leibniz wrote: "Thomas Hobbes, 
everywhere a profound examiner of principles, rightly stated that everything done by our 
mind is a computation " (On the Art of Combinations).  
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2 BOOLE: LOGIC AS ALGEBRA 

 
 

George Boole 
 

 
 

Born: 2 Nov 1815 in Lincoln, Lincolnshire, England 
Died: 8 Dec 1864 in Ballintemple, County Cork, Ireland 

 
George Boole first attended a school in Lincoln, then a commercial school. His early 
instruction in mathematics, however, was from his father (a professional shoemaker) who also 
gave George a liking for constructing optical instruments. George's interests turned to 
languages and he received instruction in Latin from a local bookseller.  
 
Boole did not study for an academic degree, but from the age of 16 he was an assistant school 
teacher. He maintained his interest in languages and intended to enter the Church. From 1835, 
however, he seems to have changed his mind for he opened his own school and began to 
study mathematics on his own.  
 
At this time Boole studied the works of Laplace and Lagrange, making notes which would 
later be the basis for his first mathematics paper. However he did receive encouragement from 
Duncan Gregory who at this time was in Cambridge and the editor of the recently founded 
Cambridge Mathematical Journal.  
 
Boole was unable to study courses at Cambridge as he required the income from his school to 
look after his parents. However he began publishing in the Cambridge Mathematical Journal. 
Under the influence of Duncan Gregory he began to study algebra.  
 
An application of algebraic methods to the solution of differential equations was published by 
Boole in the Transactions of the Royal Society and for this work he received the Society's 
Royal Medal. His mathematical work was beginning to bring him fame.  
 
Boole was appointed to the chair of mathematics at Queens College, Cork in 1849. He taught 
there for the rest of his life, gaining a reputation as an outstanding teacher.  
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In 1854 he published An investigation into the Laws of Thought, on which are founded the 
Mathematical Theories of Logic and Probabilities. Boole approached logic in a new way 
reducing it to a simple algebra, incorporating logic into mathematics. He pointed out the 
analogy between algebraic symbols and those that represent logical forms. It began the 
algebra of logic called Boolean algebra which now finds application in computer construction, 
switching circuits etc.  
 

Bool’s Algebra of Logic 
 

The classical logic of Aristotle that had so fascinated the young Leibniz involved sentences as 
•  All cows are mammals. 
•  No fish is intelligent. 
•  Some people speak Greek. 

Boole came to realize that what is significant in logical reasoning about such words as “cows” 
“people” or “fish” is a class or collection of things. He also came to see how this kind of 
reasoning can be expressed in terms of an algebra of such classes. If the letter x and y stand 
for two particular classes, then Boole wrote xy for the class that is both x and y. Boole says 

´…If an adjective, as “good” is employed as term of description, let us represent by a letter, as 
y, all things to which the description “good” is applicable, i.e. “all good things”, or the class 
“good things”. Let it further be agreed, that by the combination xy shall be represented that 
class of things to which the names or descriptions represented by x and y are simultaneously 
applicable. Thus if x alone stands for “white things”, and y for “sheep”, let xy stand for 
“white sheep”; and in like manner, if z stands for “horned things”, let zxy represent “horned 
white sheep”.´ 

 

Boole thought of this operation applied to classes as being in some ways like the operation of 
multiplication applied to numbers. However, there is a crucial difference: If y is the class of 
sheep, what is yy? The class of things that are sheep and also…sheep. So yy = y.4 

This led Boole to ask the question: In ordinary algebra, where x stands for a number, when is 
the equation xx = x true? The answer is that x is 0 or 1. 

This led Boole to conclude that the algebra of logic was precisely what ordinary algebra 
would become if it were restricted to the values of 0 and 1. 

0x = 0, 1x = 1. 

In terms of classes 0 is interpreted as the empty set, and 1 as the universe of discourse (which 
contains every object under consideration. 

If x and y represent two classes, Boole took x+y to represent the class of all things to be found 
either in x or in y, i.e. the union of x and y. 

Boole wrote x-y for a class of things in x but not in y.  

The class x⋅y includes all things to be found both in x and in y, i.e. the intersection of x and y. 

                                                 
4 Boole’s equation xx = x can be compared to Leibniz´s A ⊕  A= A. In both cases an operation, intended to be 
applied to pairs of items, when applied to an item and itself, yields the very same item as result. 
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Example. 

xx=x can be written as x - xx = 0 or x(1-x) = 0. 

Nothing can both belong and not belong to a given class x, which is Aristotle’s principle of 
contradiction. 

 
In formal terms, a Boolean algebra is a structure containing a set B, two binary functions, 
 ∧  (intersection) and ∨  (union) on B, one unary function ¬  (complementation) on B, and two 
distinguished elements 0 (the null-element) and 1 (the unit-element) of B, satisfying the 
following axioms, for all x, y, z ∈  B: 

x ∨∨∨∨ (y ∨∨∨∨ z) = (x ∨∨∨∨ y) ∨∨∨∨ z and x ∧∧∧∧ (y ∧∧∧∧ z) = (x ∧∧∧∧ y) ∧∧∧∧ z. 
x ∨∨∨∨ y = y ∨∨∨∨ x and x ∧∧∧∧ y = y ∧∧∧∧ x. 
x ∨∨∨∨ (y ∧∧∧∧ z) = (x v y) ∧ (x ∨ z) and x ∧∧∧∧ (y ∨∨∨∨ z) = (x ∧∧∧∧ y) ∨∨∨∨ (x ∧∧∧∧ z). 
x ∨∨∨∨ ¬¬¬¬x = 1 and x ∧∧∧∧ ¬¬¬¬x = 0. 
x ∨∨∨∨ 0 = x and x ∧∧∧∧ 1 = x.

 
A binary relation <= on B is defined as x <= y ↔x ∧  y = x; <= partially orders B. To see that 
the algebra of sets is a Boolean algebra let B be the power set of any set S, ∧  be set-theoretic 
intersection, ∨  be set-theoretic union, ¬  be complementation with respect to S, 0 be the null 
set, and 1 be S. Then <= is set-theoretic inclusion. 
 
The binary 0 and 1 states are naturally related to the true and false logic variables. We will 
find the following Boolean algebra useful. Consider two logic variables A and B and the result 
of some Boolean logic operation Q. We can define  
 
A useful way of displaying the results of a Boolean operation is with a truth table.  
 
We list a few Boolean rules in following figure: 
 

 

Figure 3 Properties of Boolean Operations. 
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The Boolean operations obey the usual commutative, distributive and associative rules of 
normal algebra:  

 
 

Figure 4 Boolean commutative, distributive and associative rules. 
 

Boolean algebra has wide applications in telephone switching and the design of modern 
computers. Boole's work has to be seen as a fundamental step in today's computer revolution.  

 

 
Figure 5 Logic gates 

 
One day in 1864 he walked from his residence to the College, a distance of two miles, in the 
drenching rain, and lectured in wet clothes. The result was a feverish cold which soon fell 
upon his lungs and terminated his career ....  
 
De Morgan said:  ”Boole's system of logic is but one of many proofs of genius and patience 
combined. ... That the symbolic processes of algebra, invented as tools of numerical 
calculation, should be competent to express every act of thought, and to furnish the grammar 
and dictionary of an all-containing system of logic, would not have been believed until it was 
proved. “ 
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3 FREGE: MATEMATICS AS LOGIC 
 
 

Friedrich Ludwig Gottlob Frege 
 

 
 

Born: 8 Nov 1848 in Wismar, Mecklenburg-Schwerin (now Germany) 
Died: 26 July 1925 in Bad Kleinen, Germany 

 
Gottlob Frege was the first to fully develop the main thesis of logicism, that mathematics is 
reducible to logic. 
 
Frege received his education at the universities of Jena (1869-71) and Göttingen (1871-1873) 
where he studied mathematics, physics and chemistry. He then taught at Jena in the 
department of mathematics where he remained, first as a lecturer and then a professor, for the 
rest of his working life.  
 
Frege lectured on all branches of mathematics although his mathematical publications outside 
the field of logic are few. His writings on the philosophy of logic, philosophy of mathematics, 
and philosophy of language are of major importance. He once said: Every good 
mathematician is at least half a philosopher, and every good philosopher is at least half a 
mathematician. “ 
 
His work was not particularly well received; mainly it was ignored. While volume 2 of The 
Basic Laws of Arithmetic was at the printers he received a letter from Bertrand Russell. 
Russell pointed out, with great modesty, that the Russell paradox5 gave a contradiction in 
Frege's system of axioms. After many letters between the two Frege modified one of his 
axioms and explains in an appendix to the book that this was done to restore the consistency 
of the system. However with this modified axiom, many of the theorems of Volume 1 do not 
go through and Frege must have known this. He probably never realised that even with the 
modified axiom the system is inconsistent since this was not shown until after Frege's death. 
 
Frege was a major influence on Peano and Bertrand Russell.  

                                                 
5 Se Appendix on Russell paradox 
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Frege’s Advances in Logic 
Frege virtually founded the modern discipline of mathematical logic. He forever changed the 
way philosophers and mathematical logicians think about the predicate calculus, the analysis 
of simple sentences and quantifier phrases, proofs, the foundations of mathematics, 
definitions, and the ‘natural numbers’.  
 

The Predicate Calculus 
In an attempt to realize Leibniz’s ideas for a language of thought and a rational calculus, 
Frege developed a formal notation for regimenting thought and reasoning (Begriffsschrift). 
He has developed the first predicate calculus, although we no longer use his notation. 
 
A predicate calculus is a formal system with two components: a formal language and a logic. 
The formal language Frege designed was capable of:  

(a) expressing predicational statements of the form ‘x falls under the concept F’ and ‘x 
bears relation R to y’, etc.,  

(b) expressing complex statements such as ‘it is not the case that ...’ and ‘if ... then ...’, 
and  

(c) expressing ‘quantified’ statements of the form ‘Some x is such that ...x...’ and ‘Every x 
is such that ...x...’.  

 
The logic of Frege’s calculus was a set of rules that govern when some statements of the 
language may be correctly inferred from others.  
Frege’s system was powerful enough to resolve the essential logic of mathematical reasoning.  

The Analysis of Atomic Sentences and Quantifier Phrases 
The most important insight underlying Frege’s calculus was his ‘function-argument’ analysis 
of sentences. This freed him from the limitations of the ‘subject-predicate’ analysis of 
sentences that formed the basis of Aristotelian logic and it made it possible for him to develop 
a general treatment of quantification.  
 
In traditional Aristotelian logic, the subject of a sentence and the direct object of a verb are 
not on a logical par. The rules governing the inferences between statements with different but 
related subject terms are different from the rules governing the inferences between statements 
with different but related verb complements.  
 
For example, in Aristotelian logic, the rule which permits the valid inference from ‘Fred loves 
Annie’ to ‘Something loves Annie’ is different from the rule which permits the valid 
inference from ‘Fred loves Annie’ to ‘Fred loves something’. The rule governing the first 
inference is a rule which applies only to the subject terms ‘Fred’ and ‘Something’. The rule 
governing the second inference applies only to the transitive verb complements ‘Annie’ and 
‘something’. In Aristotelian logic, these inferences have nothing in common.  
In Frege’s logic, a single rule governs both the inference from ‘Fred loves Annie’ to 
‘Something loves Annie’ and the inference from ‘Fred loves Annie’ to ‘Fred loves 
something’. This was made possible by Frege’s analysis of atomic and quantified sentences.  
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Frege took intransitive verb phrases such as ‘is happy’ to be functions of one variable (‘x is 
happy’), and resolved the sentence "Fred is happy" in terms of the application of the function 
denoted by ‘is happy’ to the argument denoted by ‘Fred’. In addition, Frege took the verb 
phrase ‘loves’ to be a function of two variables (‘x loves y’) and resolved the sentence ‘Fred 
loves Annie’ as the application of the function denoted by ‘x loves y’ to the objects denoted 
by ‘Fred’ and ‘Annie’ respectively.  

In effect, Frege saw no distinction between the subject ‘Fred’ and the direct object ‘Annie’. 
What is logically important is that ‘loves’ denotes a function of 2 arguments, that ‘gives’ 
denotes a function of 3 arguments (x gives y to z), etc. 

This analysis allowed Frege to develop a more systematic treatment of quantification than that 
offered by Aristotelian logic. No matter whether the quantified expression ‘something’ 
appears within a subject ("Something loves Annie") or within a predicate ("Fred loves 
something"), it is to be resolved in the same way. In effect, Frege treated quantified 
expressions as variable-binding operators. The variable-binding operator ‘some x is such that’ 
can bind the variable ‘x’ in the expression ‘x loves Annie’ as well as the variable ‘x’ in the 
expression ‘Fred loves x’. Thus, Frege analyzed the above inferences in the following general 
way: 

•  Fred loves Annie. Therefore, some x is such that x loves Annie.  

•  Fred loves Annie. Therefore, some x is such that Fred loves x.  

Both inferences are instances of a single valid inference rule.  
 
 

Proof 
As part of his predicate calculus, Frege developed a strict definition of a ‘proof’. In essence, 
he defined a proof to be any finite sequence of well-formed statements such that each 
statement in the sequence either is an axiom or follows from previous members by a valid rule 
of inference. A proof of the statement B from the premises A1,...,An is any finite sequence of 
statements (with B the final statement in the sequence) such that each member of the 
sequence: (a) is one of the premises A1,...,An, or (b) is an axiom, or (c) follows from previous 
members of the sequence by a rule of inference. This is essentially the definition of a proof 
that logicians still use today.  
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4 CANTOR: INFINITY 

 

Georg Ferdinand Ludwig Philipp Cantor 
 

 
 

Born: 3 March 1845 in St Petersburg, Russia 
Died: 6 Jan 1918 in Halle, Germany 

 
Georg Cantor's father was a Danish Jewish merchant that had converted to Protestantism 
while his mother was a Danish Roman Catholic. The family stayed in Russia for eleven years 
until the father's poor health forced them to move to Germany, the country Georg would call 
home for the rest of his life. Georg inherited considerable artistic talents from his parents.  
All the Cantor children displayed an early musical and artistic talent with Georg being an 
outstanding violinist as well as excelling in mathematics. His father, the eternal pragmatic, 
saw this gift and tried to push his son into the more profitable field of engineering. Georg was 
not at all happy about this idea. However, after several years of training, he became so fed up 
with the idea that he gathered the courage to beg his father to become a mathematician. 
Finally, just before entering college, his father let Georg study mathematics.  

In 1862, Georg Cantor entered the University of Zurich only to transfer the next year to the 
University of Berlin after his father's death. At Berlin he studied mathematics, philosophy and 
physics. There he was taught by some of the greatest mathematicians of the day including 
Kronecker and Weierstrass.  

After receiving his doctorate in 1867, it was difficult to find good employment and Cantor 
was forced to accept a position as an unpaid lecturer and later as an assistant professor at the 
backwater University of Halle. In 1874, he married and eventually had six children.  

It was in that same year of 1874 that Cantor published his first paper on the theory of sets. 
While studying a problem in analysis, he had dug deeply into its "foundations," especially sets 
and infinite sets. What he found shocked him so much that he wrote to a friend: "I see it but I 
don't believe it." 

In a series of papers, he was able to prove among other things that the set of integers had an 
equal number of members as the set of even numbers, squares, cubes, and roots to equations; 
that the number of points in a line segment is equal to the number of points in an infinite line, 
a plane and all mathematical space; and that the number of transcendental numbers, values 
such as π and e that can never be the solution to any algebraic equation, were much larger 
than the number of integers.  
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Interestingly, the Jesuits also used his theory to "prove" the existence of God and the Holy 
Trinity. However, Cantor, who was also an excellent theologian, quickly distanced himself 
away from such "proofs."  

Before in mathematics, infinity had been a taboo subject. Previously, Gauss had stated that 
infinity should only be used as "a way of speaking" and not as a mathematical value. Most 
mathematicians followed his advice and stayed away. However, Cantor would not leave it 
alone. He considered infinite sets not as merely going on forever but as completed entities, 
that is having an actual though infinite number of members. He called these actual infinite 
numbers transfinite numbers. By considering the infinite sets with a transfinite number of 
members, Cantor was able to come up his amazing discoveries. For his work, he was 
promoted to full professorship in 1879.  

However, his new ideas also gained him numerous enemies. Many mathematicians just would 
not accept his groundbreaking ideas that shattered their safe world of mathematics. One great 
mathematician, Henri Poincare expressed his disapproval, stating that Cantor's set theory 
would be considered by future generations as "a disease from which one has recovered." 
However, he was kinder than another critic, Leopold Kronecker.  

Kronecker was a firm believer that the only numbers were integers and that negatives, 
fractions, imaginary and especially irrational numbers had no business in mathematics. He 
simply could not handle "actual infinity." Using his prestige as a professor at the University of 
Berlin, he did all he could to suppress Cantor's ideas. Among other things, he delayed or 
suppressed completely Cantor's and his followers' publications, raged both written and verbal 
personal attacks against him, belittled his ideas in front of his students and blocked Cantor's 
life ambition of gaining a position at the prestigious University of Berlin.  

Not all mathematicians were antagonistic to Cantor's ideas. Some greats such as Mittag-
Leffler, Karl Weierstrass, and long-time friend Richard Dedekind supported his ideas and 
attacked Kronecker's actions. However, it was not enough. Like with his father before, Cantor 
simply could not handle it. Stuck in a third-rate institution, stripped of well-deserved 
recognition for his work and under constant attack by Kronecker, he suffered the first of many 
nervous breakdowns in 1884.  

The rest of his life was spent in and out of mental institutions and his work nearly ceased 
completely. Much too late for him to really enjoy it, his theory finally began to gain 
recognition by the turn of the century. He died in a mental institution in Halle.  

Whenever Cantor suffered from periods of depression he tended to turn away from 
mathematics and turn towards philosophy and his big literary interest which was a belief that 
Francis Bacon wrote Shakespeare's plays. For example in his illness of 1848 he had requested 
that he be allowed to lecture on philosophy instead of mathematics and he had begun his 
intense study of Elizabethan literature in attempting to prove his Bacon-Shakespeare theory.  

Today, Cantor's work is widely accepted by the mathematical community. His theory on 
infinite sets reset the foundation of nearly every mathematical field and brought mathematics 
to its modern form. In addition, his work has helped to explain Zeno's paradoxes that plagued 
mathematics for 2500 years. However, his theory also has led to many new questions, 
especially about set theory, that should keep mathematicians busy for centuries.  

Hilbert described Cantor's work as:- ´...the finest product of mathematical genius and one of 
the supreme achievements of purely intellectual human activity.´ 
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5 HILBERT: PROGRAM FOR MATHEMATICS 

 

David Hilbert 
 

 
 

Born: 23 Jan 1862 in Königsberg, Prussia (now Kaliningrad, Russia) 
Died: 14 Feb 1943 in Göttingen, Germany 

 
David Hilbert attended the gymnasium in his home-town of Königsberg. After graduating 
from the gymnasium, he entered the University of Königsberg. There he went on to study 
under Lindemann for his doctorate which he received in 1885 for a thesis entitled Über 
invariante Eigenschaften specieller binärer Formen, insbesondere der Kugelfunctionen. One 
of Hilbert's friends there was Minkowski, who was also a doctoral student at Königsberg, and 
they were to strongly influence each other.  
In 1884 Hurwitz was appointed to the University of Königsberg and quickly became friends 
with Hilbert, a friendship which was another important factor in Hilbert's mathematical 
development. Hilbert was a member of staff at Königsberg from 1886 to 1895, being a 
Privatdozent until 1892, then as Extraordinary Professor for one year before being appointed a 
full professor in 1893.  

In 1895, Hilbert was appointed to the chair of mathematics at the University of Göttingen, 
where he continued to teach for the rest of his career.  

In 1902, the University of Berlin offered Hilbert Fuchs' chair. Hilbert turned down the Berlin 
chair, but only after he had used the offer to bargain with Göttingen and persuade them to set 
up a new chair to bring his friend Minkowski to Göttingen.  

Hilbert's first work was on invariant theory and, in 1888, he proved his famous Basis 
Theorem. Twenty years earlier Gordan had proved the finite basis theorem for binary forms 
using a highly computational approach. Attempts to generalise Gordan's work to systems with 
more than two variables failed since the computational difficulties were too great. Hilbert 
himself tried at first to follow Gordan's approach but soon realised that a new line of attack 
was necessary. He discovered a completely new approach which proved the finite basis 
theorem for any number of variables but in an entirely abstract way. Although he proved that 
a finite basis existed his methods did not construct such a basis.  

Hilbert submitted a paper proving the finite basis theorem to Mathematische Annalen. 
However Gordan was the expert on invariant theory for Mathematische Annalen and he found  
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Hilbert's revolutionary approach difficult to appreciate. He refereed the paper and sent his 
comments to Klein: “The problem lies not with the form ... but rather much deeper. Hilbert 
has scorned to present his thoughts following formal rules, he thinks it suffices that no one 
contradict his proof ... he is content to think that the importance and correctness of his 
propositions suffice. ... for a comprehensive work for the Annalen this is insufficient.” 
 
However, Hilbert had learnt through his friend Hurwitz about Gordan's letter to Klein and 
Hilbert wrote himself to Klein in forceful terms: “... I am not prepared to alter or delete 
anything, and regarding this paper, I say with all modesty, that this is my last word so long as 
no definite and irrefutable objection against my reasoning is raised.” 
 
At the time Klein received these two letters from Hilbert and Gordan, Hilbert was an assistant 
lecturer while Gordan was the recognised leading world expert on invariant theory and also a 
close friend of Klein's. However Klein recognised the importance of Hilbert's work and 
assured him that it would appear in the Annalen without any changes whatsoever, as indeed it 
did.  
Hilbert expanded on his methods in a later paper, again submitted to the Mathematische 
Annalen and Klein, after reading the manuscript, wrote to Hilbert saying:- ´I do not doubt that 
this is the most important work on general algebra that the Annalen has ever published.´ 
In 1893 while still at Königsberg Hilbert began a work Zahlbericht on algebraic number 
theory. The German Mathematical Society requested this major report three years after the 
Society was created in 1890. The Zahlbericht (1897) is a brilliant synthesis of the work of 
Kummer, Kronecker and Dedekind but contains a wealth of Hilbert's own ideas. The ideas of 
the present day subject of 'Class field theory' are all contained in this work. Rowe, describes 
this work as: “... not really a Bericht in the conventional sense of the word, but rather a piece 
of original research revealing that Hilbert was no mere specialist, however gifted. ... he not 
only synthesized the results of prior investigations ... but also fashioned new concepts that 
shaped the course of research on algebraic number theory for many years to come.“ 
 
Hilbert's work in geometry had the greatest influence in that area after Euclid. A systematic 
study of the axioms of Euclidean geometry led Hilbert to propose 21 such axioms and he 
analysed their significance. He published Grundlagen der Geometrie in 1899 putting 
geometry in a formal axiomatic setting. The book continued to appear in new editions and 
was a major influence in promoting the axiomatic approach to mathematics which has been 
one of the major characteristics of the subject throughout the 20th century.  
Hilbert's famous 23 Paris problems challenged (and still today challenge) mathematicians to 
solve fundamental questions. Hilbert's famous speech The Problems of Mathematics was 
delivered to the Second International Congress of Mathematicians in Paris. It was a speech 
full of optimism for mathematics in the coming century and he felt that open problems were 
the sign of vitality in the subject: “The great importance of definite problems for the progress 
of mathematical science in general ... is undeniable. ... [for] as long as a branch of knowledge 
supplies a surplus of such problems, it maintains its vitality. ... every mathematician certainly 
shares ..the conviction that every mathematical problem is necessarily capable of strict 
resolution ... we hear within ourselves the constant cry: There is the problem, seek the 
solution. You can find it through pure thought...” 
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Hilbert's problems included the continuum hypothesis, the well ordering of the reals, 
Goldbach's conjecture, the transcendence of powers of algebraic numbers, the Riemann 
hypothesis, the extension of Dirichlet's principle and many more. Many of the problems were 
solved during this century, and each time one of the problems was solved it was a major event 
for mathematics. 
Today Hilbert's name is often best remembered through the concept of Hilbert space.  
Irving Kaplansky, explains Hilbert's work which led to this concept: “Hilbert's work in 
integral equations in about 1909 led directly to 20th-century research in functional analysis 
(the branch of mathematics in which functions are studied collectively). This work also 
established the basis for his work on infinite-dimensional space, later called Hilbert space, a 
concept that is useful in mathematical analysis and quantum mechanics. Making use of his 
results on integral equations, Hilbert contributed to the development of mathematical physics 
by his important memoirs on kinetic gas theory and the theory of radiations. “ 
 
In 1934 and 1939 two volumes of Grundlagen der Mathematik were published which were 
intended to lead to a 'proof theory', a direct check for the consistency of mathematics. Gödel's 
paper of 1931 showed that this aim is impossible.  
Hilbert contributed to many branches of mathematics, including invariants, algebraic number 
fields, functional analysis, integral equations, mathematical physics, and the calculus of 
variations. Hilbert's mathematical abilities were nicely summed up by Otto Blumenthal, his 
first student: “In the analysis of mathematical talent one has to differentiate between the 
ability to create new concepts that generate new types of thought structures and the gift for 
sensing deeper connections and underlying unity. In Hilbert's case, his greatness lies in an 
immensely powerful insight that penetrates into the depths of a question. All of his works 
contain examples from far-flung fields in which only he was able to discern an 
interrelatedness and connection with the problem at hand. From these, the synthesis, his work 
of art, was ultimately created. Insofar as the creation of new ideas is concerned, I would place 
Minkowski higher, and of the classical great ones, Gauss, Galois, and Riemann. But when it 
comes to penetrating insight, only a few of the very greatest were the equal of Hilbert.” 
 
Among Hilbert's students were Weyl and Zermelo.  
In 1930 Hilbert retired and the city of Königsberg made him an honorary citizen of the city. 
He gave an address which ended with six famous words showing his enthusiasm for 
mathematics and his life devoted to solving mathematical problems: 

“Wir müssen wissen, wir werden wissen“- We must know, we shall know.  
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Hilbert's Program 
David Hilbert was arguably the most ingenious mathematician of this century. He solved 
many difficult problems in particular branches of mathematics, and he also was concerned 
with the foundations of mathematics as a whole. The attempt to give all of mathematics a 
secure foundation in set theory had foundered on the ``paradoxes'' of set theory, which were 
actually presentations of an inherent self-contradiction in the assumptions of set theory. Those 
assumptions were so intuitively appealing that many great mathematicians, particularly 
Gottlob Frege, accepted them as a secure starting point from which to develop geometry, 
algebra, number theory, real analysis, and all other branches of mathematics. The discovery of 
a contradiction was rather scary to those who cared for the certainty of mathematical 
reasoning.  
 
Hilbert proposed a program to fix this problem: ``I should like to eliminate once and for all 
the questions reagarding the foundations of mathematics, in the form in which they are now 
posed, by turning every mathematical proposition into a formula that can be concretely 
exhibited and strictly derived, thus recasting mathematical definitions and inferences in such a 
way that they are unshakable and yet provide an adequate picture of the whole science.'' 
Specifically, Hilbert's program has two parts:  
 
•  Provide a single formal system of computation capable of generating all of the true 

assertions of mathematics from “first principles” (first order logic and elementary set 
theory).  

•  Prove mathematically that this system is consistent, that is, that it contains no 
contradiction. This is essentially a proof of correctness.  

 
If successful, all mathematical questions could be established by mechanical computation 
Hilbert's program founded a loosely defined school in the philosophy of mathematics, called 
formalism. Mathematicians of today seem to acknowledge formalism as the basis for their 
work, but they mostly seem not to understand it. Kurt Gödel showed that Hilbert's program is 
impossible. But, the clear statement of the program was an immense contribution to our 
understanding.  
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6 GÖDEL: END OF HILBERTS PROGRAM 
 
 

Kurt Gödel 
 

 
 

Born: 28 April 1906 in Brünn, Austria-Hungary (now Brno, Czech Republic) 
Died: 14 Jan 1978 in Princeton, New Jersey, USA 

 
 

Kurt Gödel attended school in Brünn, completing his school studies in 1923. His brother 
Rudolf Gödel said: “Even in High School my brother was somewhat more one-sided than me 
and to the astonishment of his teachers and fellow pupils had mastered university mathematics 
by his final Gymnasium years. ... Mathematics and languages ranked well above literature and 
history. At the time it was rumoured that in the whole of his time at High School not only was 
his work in Latin always given the top marks but that he had made not a single grammatical 
error.” 
 
In 1923 Kurt entered the University of Vienna where Furtwängler, Hahn, Wirtinger, Menger, 
Helly were teachers. As an undergraduate he took part in a seminar run by Schlick which 
studied Russell's book Introduction to mathematical philosophy. Olga Tausky-Todd, a fellow 
student of Gödel's, wrote: “It became slowly obvious that he would stick with logic, that he 
was to be Hahn's student and not Schlick's, that he was incredibly talented. His help was much 
in demand.” 
 
He completed his doctoral dissertation under Hahn's supervision in 1929 and became a 
member of the faculty of the University of Vienna in 1930, where he belonged to the school 
of logical positivism until 1938.  
He is best known for his proof of Incompleteness Theorems. In 1931 he published these 
results in Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 
Systeme . He proved fundamental results about axiomatic systems showing in any axiomatic 
mathematical system there are propositions that cannot be proved or disproved within the 
axioms of the system. In particular the consistency of the axioms cannot be proved.  

This ended a hundred years of attempts to put the whole of mathematics on an axiomatic 
basis. One major attempt had been by Bertrand Russell with Principia Mathematica (1910-
13). Another was Hilbert's formalism which suffered a severe blow by Gödel's results.  
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The theorem did not destroy the fundamental idea of formalism, but it did demonstrate that 
any system would have to be more comprehensive than that envisaged by Hilbert.  

Gödel's results were a landmark in 20th-century mathematics, showing that mathematics is 
not a finished object, as had been believed. It also implies that a computer can never be 
programmed to answer all mathematical questions.  

Gödel met Zermelo in Bad Elster in 1931. Olga Taussky-Todd, who was at the same meeting, 
wrote: 
´The trouble with Zermelo was that he felt he had already achieved Gödel's most admired 
result himself. Scholz seemed to think that this was in fact the case, but he had not announced 
it and perhaps would never have done so. ... The peaceful meeting between Zermelo and 
Gödel at Bad Elster was not the start of a scientific friendship between two logicians.´ 
 
In 1933 Hitler came to power. At first this had no effect on Gödel's life in Vienna. He had 
little interest in politics. However after Schlick, whose seminar had aroused Gödel's interest in 
logic, was murdered by a National Socialist student, Gödel was much affected and had his 
first breakdown. His brother Rudolf wrote  
´This event was surely the reason why my brother went through a severe nervous crisis for 
some time, which was of course of great concern, above all for my mother. Soon afer his 
recovery he received the first call to a Guest Professorship in the USA.´ 
 
In 1934 Gödel gave a series of lectures at Princeton entitled On undecidable propositions of 
formal mathematical systems. At Veblen's suggestion Kleene, who had just completed his 
Ph.D. this at Princeton, took notes of these lectures which have been subsequently published. 
He returned to Vienna and married Adele Porkert in 1938. In 1940 Gödel emigrated to the 
United States and held a chair at the Institute for Advanced Study in Princeton, from 1953 to 
his death. He received the National Medal of Science in 1974.  

His work Consistency of the axiom of choice and of the generalized continuum-hypothesis 
with the axioms of set theory (1940) is a classic of modern mathematics.  

His brother Rudolf, himself a medical doctor, wrote: “My brother had a very individual and 
fixed opinion about everything and could hardly be convinced otherwise. Unfortunately he 
believed all his life that he was always right not only in mathematics but also in medicine, so 
he was a very difficult patient for doctors. After severe bleeding from a duodenal ulcer ... for 
the rest of his life he kept to an extremely strict (over strict?) diet which caused him slowly to 
lose weight.” 

 
Towards the end of his life Gödel became convinced that he was being poisoned and, refusing 
to eat to avoid being poisoned, starved himself to death.  
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7 TURING: UNIVERSAL AUTOMATON 
 

Alan Mathison Turing 
 

 
 

Born: 23 June 1912 in London, England 
Died: 7 June 1954 in Wilmslow, Cheshire, England 

 
Alan Turing’s father, Julius Mathison Turing, was a British member of the Indian Civil 
Service and he was often abroad. Alan's mother, Ethel Sara Stoney, was the daughter of the 
chief engineer of the Madras railways and Alan's parents had met and married in India. When 
Alan was about one year old his mother rejoined her husband in India, leaving Alan in 
England with friends of the family. Alan was sent to school but did not seem to be obtaining 
any benefit so he was removed from the school after a few months.  
Next he was sent to Hazlehurst Preparatory School where he seemed to be an average to good 
pupil in most subjects but was greatly taken up with following his own ideas. He became 
interested in chess while at this school and he joined the debating society. He completed his 
Common Entrance Examination in 1926 and then went to Sherborne School. Now 1926 was 
the year of the general strike and when the strike was in progress Turing cycled 60 miles to 
the school from his home, not too demanding a task for Turing who later was to become a fine 
athlete of almost Olympic standard. He found it very difficult to fit into what was expected at 
this public school, yet his mother had been so determined that he should have a public school 
education. Many of the most original thinkers have found conventional schooling an almost 
incomprehensible process and this seems to have been the case for Turing. His genius drove 
him in his own directions rather than those required by his teachers.  

He was criticised for his handwriting, struggled at English, and even in mathematics he was 
too interested with his own ideas to produce solutions to problems using the methods taught 
by his teachers. Despite producing unconventional answers, Turing did win almost every 
possible mathematics prize while at Sherborne. In chemistry, a subject which had interested 
him from a very early age, he carried out experiments following his own agenda which did 
not please his teacher. Turing's headmaster wrote: “If he is to stay at Public School, he must 
aim at becoming educated. If he is to be solely a Scientific Specialist, he is wasting his time at 
a Public School.” 
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This says something about the school system that Turing was being subjected to. However, 
Turing learnt deep mathematics while at school, although his teachers were probably not 
aware of the studies he was making on his own. He read Einstein's own papers on relativity 
and he also read about quantum mechanics in Eddington's The nature of the physical world.  
 
An event which was to greatly affect Turing throughout his life took place in 1928. He formed 
a close friendship with Christopher Morcom, a pupil in the year above him at school, and the 
two worked together on scientific ideas. Perhaps for the first time Turing was able to find 
someone with whom he could share his thoughts and ideas. However Morcom died in 
February 1930 and the experience was a shattering one to Turing.  
 
Despite the difficult school years, Turing entered King's College, Cambridge in 1931 to study 
mathematics. This was not achieved without difficulty. Turing sat the scholarship 
examinations in 1929 and won an exhibition, but not a scholarship. Not satisfied with this 
performance, he took the examinations again in the following year, this time winning a 
scholarship. In many ways Cambridge was a much easier place for unconventional people like 
Turing than school had been. He was now much more able to explore his own ideas and he 
read Russell's Introduction to mathematical philosophy in 1933. At about the same time he 
read von Neumann's 1932 text on quantum mechanics, a subject he returned to a number of 
times throughout his life.  
The year 1933 saw the beginnings of Turing's interest in mathematical logic. He read a paper 
to the Moral Science Club at Cambridge in December of that year of which the following 
minute was recorded: “A M Turing read a paper on "Mathematics and logic" . He suggested 
that a purely logistic view of mathematics was inadequate; and that mathematical propositions 
possessed a variety of interpretations of which the logistic was merely one.” 
 
1933 was also the year of Hitler's rise in Germany and of an anti-war movement in Britain. 
Turing joined the anti-war movement but he did drift neither towards Marxism, nor pacifism, 
as happened to many.  
Turing graduated in 1934 then, in the spring of 1935, he attended Max Newman's advanced 
course on the foundations of mathematics. This course studied Gödel's incompleteness results 
and Hilbert's question on decidability. In one sense 'decidability' was a simple question, 
namely given a mathematical proposition could one find an algorithm which would decide if 
the proposition was true of false. For many propositions it was easy to find such an algorithm.  

The real difficulty arose in proving that for certain propositions no such algorithm existed. 
When given an algorithm to solve a problem it was clear that it was indeed an algorithm, yet 
there was no definition of an algorithm which was rigorous enough to allow one to prove that 
none existed. Turing began to work on these ideas.  

Turing was elected a fellow of King's College, Cambridge in 1935 for a dissertation On the 
Gaussian error function which proved fundamental results on probability theory, namely the 
central limit theorem. Although the central limit theorem had recently been discovered, 
Turing was not aware of this and discovered it independently. In 1936 Turing was a Smith's 
Prizeman.  
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Turing's achievements at Cambridge had been on account of his work in probability theory. 
However, he had been working on the decidability questions since attending Newman's 
course. In 1936 he published On Computable Numbers, with an application to the 
Entscheidungsproblem. It is in this paper that Turing introduced an abstract machine, now 
called a Turing machine, which moved from one state to another using a precise finite set of 
rules (given by a finite table) and depending on a single symbol it read from a tape.  

The Turing Machine 

The Turing machine could write a symbol on the tape, or delete a symbol from the tape. 
Turing wrote: “ Some of the symbols written down will form the sequences of figures which 
is the decimal of the real number which is being computed. The others are just rough notes to 
"assist the memory". It will only be these rough notes which will be liable to erasure. “ 

He defined a computable number as real number whose decimal expansion could be 
produced by a Turing machine starting with a blank tape. He showed that π was computable, 
but since only countably many real numbers are computable, most real numbers are not 
computable. He then described a number which is not computable and remarks that this seems 
to be a paradox since he appears to have described in finite terms. However, Turing 
understood the source of the apparent paradox. It is impossible to decide (using another 
Turing machine) whether a Turing machine with a given table of instructions will output an 
infinite sequence of numbers. 
Although this paper contains ideas which have proved of fundamental importance to 
mathematics and to computer science ever since it appeared, publishing it in the Proceedings 
of the London Mathematical Society did not prove easy. The reason was that Alonzo Church 
published An unsolvable problem in elementary number theory in the American Journal of 
Mathematics in 1936 which also proves that there is no decision procedure for arithmetic. 
Turing's approach is very different from that of Church but Newman had to argue the case for 
publication of Turing's paper before the London Mathematical Society would publish it. 
Turing's revised paper contains a reference to Church's results and the paper, first completed 
in April 1936, was revised in this way in August 1936 and it appeared in print in 1937.  
A good feature of the resulting discussions with Church was that Turing became a graduate 
student at Princeton University in 1936. At Princeton, Turing undertook research under 
Church's supervision and he returned to England in 1938, having been back in England for the 
summer vacation in 1937 when he first met Wittgenstein. The major publication which came 
out of his work at Princeton was Systems of Logic Based on Ordinals which was published in 
1939. Newman writes: ´This paper is full of interesting suggestions and ideas. ... [it] throws 
much light on Turing's views on the place of intuition in mathematical proof.” 
 
Before this paper appeared, Turing published two other papers on rather more conventional 
mathematical topics. One of these papers discussed methods of approximating Lie groups by 
finite groups. The other paper proves results on extensions of groups, which were first proved 
by Reinhold Baer, giving a simpler and more unified approach.  
Perhaps the most remarkable feature of Turing's work on Turing machines was that he was 
describing a modern computer before technology had reached the point where construction 
was a realistic proposition. He had proved in his 1936 paper that a universal Turing machine 
existed: ”... which can be made to do the work of any special-purpose machine, that is to say 
to carry out any piece of computing, if a tape bearing suitable "instructions" is inserted into 
it.” 
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Although to Turing a "computer" was a person who carried out a computation, we must see in 
his description of a universal Turing machine what we today think of as a computer with the 
tape as the program.  
While at Princeton Turing had played with the idea of construction a computer. Once back at 
Cambridge in 1938 he starting to build an analogue mechanical device to investigate the 
Riemann hypothesis, which many consider today the biggest unsolved problem in 
mathematics. However, his work would soon take on a new aspect for he was contacted, soon 
after his return, by the Government Code and Cypher School who asked him to help them in 
their work on breaking the German Enigma codes.  

When war was declared in 1939 Turing immediately moved to work full-time at the 
Government Code and Cypher School at Bletchley Park. Although the work carried out at 
Bletchley Park was covered by the Official Secrets Act, much has recently become public 
knowledge. Turing's brilliant ideas in solving codes, and developing computers to assist break 
them, may have saved more lives of military personnel in the course of the war than any 
other. It was also a happy time for him: ”... perhaps the happiest of his life, with full scope for 
his inventiveness, a mild routine to shape the day, and a congenial set of fellow-workers.” 
Together with another mathematician W G Welchman, Turing developed the Bombe, a 
machine based on earlier work by Polish mathematicians, which from late 1940 was decoding 
all messages sent by the Enigma machines of the Luftwaffe. The Enigma machines of the 
German navy were much harder to break but this was the type of challenge which Turing 
enjoyed. By the middle of 1941 Turing's statistical approach, together with captured 
information, had led to the German navy signals being decoded at Bletchley.  
From November 1942 until March 1943 Turing was in the United States liasing over 
decoding issues and also on a speech secrecy system. Changes in the way the Germans 
encoded their messages had meant that Bletchley lost the ability to decode the messages. 
Turing was not directly involved with the successful breaking of these more complex codes, 
but his ideas proved of the greatest importance in this work. Turing was awarded the O.B.E. 
in 1945 for his vital contribution to the war effort.  

At the end of the war Turing was invited by the National Physical Laboratory in London to 
design a computer. His report proposing the Automatic Computing Engine (ACE) was 
submitted in March 1946. Turing's design was at that point an original detailed design and 
prospectus for a computer in the modern sense. The size of storage he planned for the ACE 
was regarded by most who considered the report as hopelessly over-ambitious and there were 
delays in the project being approved.  

Turing returned to Cambridge for the academic year 1947-48 where his interests ranged over 
many topics far removed from computers or mathematics, in particular he studied neurology 
and physiology. He did not forget about computers during this period, however, and he wrote 
code for programming computers. He had interests outside the academic world too, having 
taken up athletics seriously after the end of the war. He was a member of Walton Athletic 
Club winning their 3 mile and 10 mile championship in record time. He ran in the A.A.A. 
Marathon in 1947 and was placed fifth.  
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By 1948 Newman was the professor of mathematics at the University of Manchester and 
offered Turing a readership there. Turing resigned from the National Physical Laboratory to 
take up the post in Manchester. Newman writes that in Manchester: “... work was beginning 
on the construction of a computing machine by F C Williams and T Kilburn. The expectation 
was that Turing would lead the mathematical side of the work, and for a few years he 
continued to work, first on the design of the subroutines out of which the larger programs for 
such a machine are built, and then, as this kind of work became standardised, on more general 
problems of numerical analysis.” 
In 1950 Turing published Computing machinery and intelligence in Mind. It is another 
remarkable work from his brilliantly inventive mind which seemed to foresee the questions 
which would arise as computers developed. He studied problems which today lie at the heart 
of artificial intelligence. It was in this 1950 paper that he proposed the Turing Test which is 
still today applied. Turing proposed a definition of "thinking" or "consciousness" using the 
following game: a tester would have to decide, on the basis of written conversation, whether 
the entity in the next room responding to the tester's queries was a human or a computer. If 
this distinction could not be made, then it could be fairly said that the computer was 
"thinking". 
 
Turing did not forget about questions of decidability which had been the starting point for his 
brilliant mathematical publications. One of the main problems in the theory of group 
presentations was the question: given any word in a finitely presented group is there an 
algorithm to decide if the word is equal to the identity. Post had proved that for semigroups no 
such algorithm exists. Turing though at first that he had proved the same result for groups but, 
just before giving a seminar on his proof, he discovered an error. He was able to rescue from 
his faulty proof the fact that there was a cancellative semigroup with insoluble word problem 
and he published this result in 1950. Boone used the ideas from this paper by Turing to prove 
the existence of a group with insoluble word problem in 1957.  

Turing was elected a Fellow of the Royal Society of London in 1951, mainly for his work on 
Turing machines in 1936. By 1951 he was working on the application of mathematical theory 
to biological forms. In 1952 he published the first part of his theoretical study of 
morphogenesis, the development of pattern and form in living organisms.  

Turing was arrested for violation of British homosexuality statutes in 1952 when he reported 
to the police details of a homosexual affair. He had gone to the police because he had been 
threatened with blackmail. He was tried as a homosexual on 31 March 1952, offering no 
defence other than that he saw no wrong in his actions. Found guilty he was given the 
alternatives of prison or oestrogen injections for a year. He accepted the latter and returned to 
a wide range of academic pursuits.  

Not only did he press forward with further study of morphogenesis, but he also worked on 
new ideas in quantum theory, on the representation of elementary particles by spinors, and on 
relativity theory. Although he was completely open about his sexuality, he had a further 
unhappiness which he was forbidden to talk about due to the Official Secrets Act.  

Turing died of potassium cyanide poisoning while conducting electrolysis experiments. The 
cyanide was found on a half eaten apple beside him. An inquest concluded that it was self-
administered but his mother always maintained that it was an accident.  
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8 VON NEUMANN: COMPUTER 
 

John von Neumann 
 

 
 
 

Born: 28 Dec 1903 in Budapest, Hungary 
Died: 8 Feb 1957 in Washington D.C., USA 

 
 
John von Neumann was born János von Neumann. His father, Max Neumann, was a top 
banker and he was brought up in Budapest where as a child he learnt languages from the 
German and French governesses. Although the family were Jewish, Max Neumann did not 
observe the strict practices of that religion and the household seemed to mix Jewish and 
Christian traditions.  
It is also interesting how Max Neumann's son acquired the "von". In 1913 Max Neumann 
purchased a title but did not change his name. His son, however, used the German form von 
Neumann.  
As a child von Neumann showed he had an incredible memory. He was able to memorize e.g. 
a page of the phone book, with names, addresses, and numbers in order.  

In 1911 von Neumann entered the Lutheran Gymnasium. His mathematics teacher quickly 
recognised von Neumann's genius and he has obtained special coaching. The school had 
another outstanding mathematician one year older than von Neumann, namely Eugene 
Wigner.  

After the World War I ended, Béla Kun controlled Hungary for five months in 1919 with a 
Communist government. The rich came under attack and the Neumann family fled to Austria. 
However, after a month, they returned to face the problems of Budapest. When Kun's 
government failed, the fact that it had been largely composed of Jews meant that Jewish 
people were blamed. Such situations lack logic and the fact that the Neumann's were opposed 
to Kun's government did not save them from persecution.  

In 1921 von Neumann completed his education at the Lutheran Gymnasium. His first 
mathematics paper written together with Fekete, the assistant at the University of Budapest 
who had been tutoring him was published in 1922. However Max Neumann wanted his son to 
follow a career in business, but in the end all agreed on the compromise subject of chemistry 
for von Neumann's university studies.  
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Von Neumann studied chemistry at the University of Berlin until 1923 when he went to 
Zurich. He received his diploma in chemical engineering from the Technische Hochschule in 
Zürich in 1926. While in Zurich he continued his interest in mathematics, despite studying 
chemistry, and interacted with Weyl and Pólya who were both at Zurich. He even took over 
one of Weyl's courses when he was absent from Zurich for a time.  

Pólya said “Johnny was the only student I was ever afraid of. If in the course of a lecture I 
stated an unsolved problem, the chances were he'd come to me as soon as the lecture was 
over, with the complete solution in a few scribbles on a slip of paper.” 
Von Neumann received his doctorate in mathematics from the University of Budapest, also in 
1926(!), with a thesis on set theory. He published a definition of ordinal numbers when he 
was 20, the definition is the one used today.  

Von Neumann lectured at Berlin from 1926 to 1929 and at Hamburg from 1929 to 1930. He 
also held a Rockefeller fellowship to enable him to undertake postdoctoral studies at the 
University of Göttingen. He studied under Hilbert at Göttingen during 1926-27. By this time 
von Neumann had achieved celebrity status:“ von Neumann's fame had spread worldwide in 
the mathematical community. At academic conferences, he would find himself pointed out as a 
young genius.” 

Von Neumann was invited to Princeton to lecture on quantum theory in 1929. He married 
Marietta Kovesi before setting out for the United States. In 1930 von Neumann became a 
visiting lecturer at Princeton University, being appointed professor there in 1931.  
Between 1930 and 1933 von Neumann taught at Princeton but this was not one of his strong 
points. “His fluid line of thought was difficult for those less gifted to follow. He was notorious 
for dashing out equations on a small portion of the available blackboard and erasing 
expressions before students could copy them.” 

He became one of the original six mathematics professors (J W Alexander, A Einstein, M 
Morse, O Veblen, J von Neumann and H Weyl) in 1933 at the newly founded Institute for 
Advanced Study in Princeton, a position he kept for the remainder of his life.  

During the first years that he was in the United States, von Neumann continued to return to 
Europe during the summers. Until 1933 he still held academic posts in Germany but resigned 
these when the Nazis came to power.  

Von Neumann and Marietta had a daughter Marina in 1936 but their marriage ended in 
divorce in 1937. The following year he married Klára Dán, also from Budapest, whom he met 
on one of his European visits. After marrying, they sailed to the United States and made their 
home in Princeton. There von Neumann lived a rather unusual lifestyle for a top 
mathematician. He had always enjoyed parties. The parties at the von Neumann's house were 
frequent, and famous.  

In his youthful work, von Neumann was concerned not only with mathematical logic 
and the axiomatics of set theory, but, simultaneously, with the substance of set theory 
itself, obtaining interesting results in measure theory and the theory of real variables. It 
was in this period also that he began his classical work on quantum theory, the 
mathematical foundation of the theory of measurement in quantum theory and the new 
statistical mechanics. His text Mathematische Grundlagen der Quantenmechanik 
(1932) built a solid framework for the new quantum mechanics.  
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In game theory von Neumann proved the minimax theorem. He gradually expanded his work 
in game theory, and with co-author Oskar Morgenstern, he wrote the classic text Theory of 
Games and Economic Behaviour (1944).  
 
In the middle 30's, Johnny was fascinated by the problem of hydrodynamical turbulence. It 
was then that he became aware of the mysteries underlying the subject of non-linear partial 
differential equations. His work, from the beginnings of the Second World War, concerns a 
study of the equations of hydrodynamics and the theory of shocks. The phenomena described 
by these non-linear equations are baffling analytically and defy even qualitative insight by 
present methods. Numerical work seemed to him the most promising way to obtain a feeling 
for the behaviour of such systems. This impelled him to study new possibilities of computation 
on electronic machines ...  
 
Von Neumann was one of the pioneers of computer science making significant contributions 
to the development of logical design. Shannon writes: “Von Neumann spent a considerable 
part of the last few years of his life working in [automata theory]. It represented for him a 
synthesis of his early interest in logic and proof theory and his later work, during World War 
II and after, on large scale electronic computers. Involving a mixture of pure and applied 
mathematics as well as other sciences, automata theory was an ideal field for von Neumann's 
wide-ranging intellect. He brought to it many new insights and opened up at least two new 
directions of research.”  
 
He advanced the theory of cellular automata, advocated the adoption of the bit as a 
measurement of computer memory, and solved problems in obtaining reliable answers from 
unreliable computer components.  
 
During and after World War II, von Neumann served as a consultant to the armed forces. His 
contributions included a proposal of the implosion method for atomic bombs and his 
participation in the development of the hydrogen bomb.  
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APPENDIX 1 
 
 

Charles Babbage 
 

 
 

Born: 26 Dec 1791 in London, England 
Died: 18 Oct 1871 in London, England 

 
Charles Babbage's father was Benjamin Babbage, a banker, and his mother was Betsy 
Plumleigh Babbage.  
Charles suffered ill health as a child, as he relates: “Having suffered in health at the age of 
five years, and again at that of ten by violent fevers, from which I was with difficulty saved, I 
was sent into Devonshire and placed under the care of a clergyman (who kept a school at 
Alphington, near Exeter), with instructions to attend to my health; but, not to press too much 
knowledge upon me: a mission which he faithfully accomplished. “ 
Since his father was fairly wealthy, he could afford to have Babbage educated at private 
schools. After the school at Alphington he was sent to an academy at Forty Hill, Enfield, 
Middlesex where his education properly began. He began to show a passion for mathematics 
but a dislike for the classics. On leaving the academy, he continued to study at home, having 
an Oxford tutor to bring him up to university level.  

Babbage enter Trinity College, Cambridge in 1810. However the grounding he had acquired 
from the books he had studied made him dissatisfied with the teaching at Cambridge. He 
wrote: “Thus it happened that when I went to Cambridge I could work out such questions as 
the very moderate amount of mathematics which I then possessed admitted, with equal 
facility, in the dots of Newton, the d's of Leibniz, or the dashes of Lagrange. I thus acquired a 
distaste for the routine of the studies of the place, and devoured the papers of Euler and other 
mathematicians scattered through innumerable volumes of the academies of St Petersburg, 
Berlin, and Paris, which the libraries I had recourse to contained. Under these circumstances 
it was not surprising that I should perceive and be penetrated with the superior power of the 
notation of Leibniz. ” 

Babbage and Herschel produced the first of the publications of the Analytical Society when 
they published Memoirs of the Analytical Society in 1813. This is a remarkably deep work 
when one realises that it was written by two undergraduates.  
Babbage had moved from Trinity College to Peterhouse and it was from that College that he 
graduated with a B.A. in 1814.  

Babbage married in 1814, then left Cambridge in 1815 to live in London. He wrote two major 
papers on functional equations in 1815 and 1816. Also in 1816, at the early age of 24, he was 
elected a fellow of the Royal Society of London.  
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Babbage was discontented with the way that the learned societies of that time were run. 
Although elected to the Royal Society of London, he was unhappy with it. He was to write of 
his feelings on how the Royal Society was run: “The Council of the Royal Society is a 
collection of men who elect each other to office and then dine together at the expense of this 
society to praise each other over wine and give each other medals. “ 
 

 
 

Figure 1 Babagge’s Differential Engine 
 

 

Figure 2 Babagge’s Analytical Engine 

In 1827 Babbage became Lucasian Professor of Mathematics at Cambridge, a position he held 
for 12 years although he never taught. He was completely absorbed in what was to became the 
main passion of his life, namely the development of mechanical computers.  

The computation of logarithms had made Babbage aware of the inaccuracy of human 
calculation around 1812. He wrote: ..."I am thinking that all these tables (logarithms) might 
be calculated by machinery. " 
In 1819, when his interests were turning towards astronomical instruments, Babbage’s ideas 
became more precise and he formulated a plan to construct tables using the method of 
differences by mechanical means. Such a machine would be able to carry out complex 
operations using only the mechanism for addition.  
 
Babbage began to construct a small difference engine in 1819. He published his invention in a 
paper Note on the application of machinery to the computation of astronomical and 
mathematical tables read to the Royal Astronomical Society in 1822.  
 
His initial grant was for 1500 and he began work on a large difference engine which he 
believed he could complete in three years. He set out to produce an engine with ”… six orders 
of differences, each of twenty places of figures, whilst the first three columns would each have 
had half a dozen additional figures. “ 

 
Such an engine would easily have been able to compute all the logarithm tables, and it was 
intended to have a printer to print out the results automatically. However the construction 
proceeded slower than expected. By 1827 the expenses were getting out of hand.  
 
The year 1827 was a year of tragedy for Babbage; his father, his wife and two of his children 
all died that year. His own health was poor and he was advised to travel on the Continent. 
After his travels he returned near the end of 1828.  
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Further attempts to obtain government support eventually resulted in the Duke of Wellington, 
the Chancellor of the Exchequer and other members of the government visiting Babbage and 
inspecting the work. By February 1830 the government had paid, or promised to pay, 9000 
towards the project.  

In 1830 Babbage published Reflections on the Decline of Science in England, a controversial 
work that resulted in the formation, one year later, of the British Association for the 
Advancement of Science. In 1834 Babbage published his most influential work On the 
Economy of Machinery and Manufactures, in which he proposed an early form of what today 
we call operational research.  

The year 1834 was the one in which work stopped on the difference engine. By that time the 
government had put 17000 into the project and Babbage had put 6000 of his own money. For 
eight years from 1834 to 1842 the government would make no decision as to whether to 
continue support. In 1842 the decision not to proceed was taken by Robert Peel's government. 
Dubbey writes: “Babbage had every reason to feel aggrieved about his treatment by 
successive governments. They had failed to understand the immense possibilities of his work, 
ignored the advice of the most reputable scientists and engineers, procrastinated for eight 
years before reaching a decision about the difference engine, misunderstood his motives and 
the sacrifices he had made, and ... failed to protect him from public slander and ridicule.” 
 
By 1834 Babbage had completed the first drawings of the analytical engine, the forerunner of 
the modern electronic computer. His work on the difference engine had led him to a much 
more sophisticated idea. Although the analytic engine never progressed beyond detailed 
drawings, it is remarkably similar in logical components to a present day computer.  

Babbage describes five logical components, the store, the mill, the control, the input and the 
output. The store contains “... all the variables to be operated upon, as well as all those 
quantities which had arisen from the results of other operations. “ 
 
The mill is the analogue of the CPU in a modern computer and it is the place: “... into which 
the quantities about to be operated upon are always bought. “ 
The control on the sequence of operations to be carried out was by a Jacquard loom type 
device. It was operated by punched cards and the punched cards contained the program for the 
particular task: “Every set of cards made for any formula will at any future time recalculate 
the formula with whatever constants may be required. Thus the Analytical Engine will possess 
a library of its own. Every set of cards once made will at any time reproduce the calculations 
for which it was first arranged.” 
 
The store was to hold 1000 numbers each of 50 digits, but Babbage designed the analytic 
engine to effectively have infinite storage. This was done by outputting data to punched cards 
which could be read in again at a later stage when needed. Babbage decided, however, not to 
seek government support after his experiences with the difference engine.  
 
Babbage visited Turin in 1840 and discussed his ideas with mathematicians there including 
Menabrea who collected all the material needed to describe the analytical engine and 
published this in 1842.  Lady Ada Lovelace translated Menabrea's article into English and 
added notes considerably more extensive than the original account. This was published in 
1843 and included: “... elaborations on the points made by Menabrea, together with some 
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complicated programs of her own, the most complex of these being one to calculate the 
sequence of Bernoulli numbers” 
Although Babbage never built an operational, mechanical computer, his design concepts have 
been proved correct and recently such a computer has been built following Babbage's own 
design criteria.  
 
Babbage never did quite give up hope that the analytical engine would be built writing in 
1864: ”... if I survive some few years longer, the Analytical Engine will exist...” 
 
After Babbage's death a committee , was appointed by the British Association: “... to report 
upon the feasibility of the design, recorded their opinion that its successful realization might 
mark an epoch in the history of computation equally memorable with that of the introduction 
of logarithms... “ 
This was an understatement. Modern computers, logically similar to Babbage's, have changed 
the mathematics. We can say that they have changed the whole world. 

 
 

Augusta Ada King, Countess of Lovelace 
 

 
 

Born: 10 Dec 1815 in Piccadilly, Middlesex (now in London), England 
Died: 27 Nov 1852 in Marylebone, London, England 

 

 
Augusta Ada Byron was the daughter of poet Lord Byron. Five weeks after Ada was born 
Lady Byron asked for a separation from Lord Byron, and was awarded sole custody of Ada 
who she brought up to be a mathematician and scientist. She was educated by private tutors. 
Advanced study in mathematics are being provided by De Morgan. She became Countess of 
Lovelace when her husband William King, whom she married in 1835, was created an Earl in 
1838.  
In 1833 Lady Lovelace became interested in Babbage's analytic engine. Ten years later she 
produced an annotated translation of Menabrea's Notions sur la machine analytique de 
Charles Babbage (1842). In the annotations she describes how the Analytical Engine could be 
programmed to compute Bernoulli numbers.  

Lady Lovelace's prophetic comments included her predictions that such a machine might be 
used to compose complex music, to produce graphics, and would be used for both practical 
and scientific use. She was correct. 
 

She described the Analytical Engine in very famous words: “the Analytical Engine weaves 
algebraic patterns, just as the Jacquard-loom weaves flowers and leaves.” 
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APPENDIX 2 
 
 

Russels paradox 
 
Russell discovered the paradox which bears his name in 1901, while working on his 
Principles of Mathematics.  
 
The paradox occurred in connection with the set of all sets which are not members of 
themselves. Such a set, if it exists, will be a member of itself if and only if it is not a member 
of itself.  
 
The significance of the paradox follows since, in classical logic, all sentences are affected by 
a contradiction. In the eyes of many mathematicians (including David Hilbert) it therefore 
appeared that no proof could be trusted once it was discovered that the logic apparently 
underlying all of mathematics was contradictory.  
 
Russell's paradox arises as a result of unrestricted comprehension (or abstraction) axiom of 
naive set theory. Originally introduced by Georg Cantor, the axiom states that:  
any predicate expression, P(x), which contains x as a free variable, will determine a set 
whose members are exactly those objects which satisfy P(x).  
The axiom gives form to the intuition that any coherent condition may be used to determine a 
set (or class). Most attempts at resolving Russell's paradox have therefore concentrated on 
various ways of restricting or abandoning this axiom.  
 
Russell's own response to the paradox came with the introduction of his theory of types. His 
basic idea was that reference to troublesome sets (such as the set of all sets which are not 
members of themselves) could be avoided by arranging all sentences into a hierarchy 
(beginning with sentences about individuals at the lowest level, sentences about sets of 
individuals at the next lowest level, sentences about sets of sets of individuals at the next 
lowest level, etc.).  
 
Using the vicious circle principle also adopted by Henri Poincaré, together with his so-called 
"no class" theory of classes, Russell was then able to explain why the unrestricted 
comprehension axiom fails. Propositional functions, such as the function "x is a set", should 
not be applied to themselves since self-application would involve a vicious circle.  
 
On this view, it follows that it is possible to refer to a collection of objects for which a given 
condition (or predicate) holds only if they are all at the same level or of the same "type".  
 
Although first introduced by Russell in 1903 in the Principles, his theory of types finds its 
mature expression in his 1908 article Mathematical Logic as Based on the Theory of Types 
and in the monumental work he co-authored with Alfred North Whitehead, Principia 
Mathematica (1910, 1912, 1913). Thus, in its details, the theory admits of two versions, the 
"simple theory" and the "ramified theory".  

 


