The science of computing

Computer science is a science of abstraction — creating the right model for a problem and devising the appropriate mechanizable techniques to solve it.
— A. Aho and J. Ullman

Objectives

After studying this chapter you should understand the following:

- the nature of software systems;
- how abstraction and decomposition are used to deal with complexity in problems;
- the fundamental components of a program, data and functionality;
- objects, and object-oriented systems and their relationship to software systems in general.
Objectives

- Also, you should be able to:
 - identify basic components in complex structures;
 - provide examples of abstraction levels from least abstract to more abstract;
 - explain how composition and abstraction simplify the organization of a system;
 - provide informal algorithms for common activities.

Nature of a software system

- A software system is a temporary solution to a changing problem…
- With two fundamental characteristics:
 - they are dynamic
 - they are complex.

Dealing with complexity: composition and abstraction

- Size of software system requires that …
 - It must be broken down into manageable pieces
 - It must be dealt with as a composite structure
 - Its parts must interact together
 - The more parts the more interaction
 - System complexity is proportional to the number of parts
Dealing with complexity: composition and abstraction

- **composition:**
 Process of building a system using simpler parts or components

- **abstraction:**
 Allows one to deal with system components with no worry about details of how components are constructed

- **abstraction ...**
 - Process of ignoring details irrelevant to problem at hand
 - Emphasizes essential ones
 - To abstract is to disregard certain differentiating details
Two aspects of a system:

- **data** – information program deals with
 - **data descriptions** are fixed,
 - individual **data values** may change each time program runs

- **functionality** – what the program does with data
 - **computation**: a goal-directed sequence of actions performed by a processor
 - **algorithm**: set of instructions describing pattern of behavior guaranteed to achieve a goal

Object-oriented systems

- Use the Object Oriented approach for structuring systems
 - Intended to produce systems that are ...
 - composite
 - modular
 - built using abstraction
 - organized around data
Object-oriented systems

- Objects: abstractions used to describe the problem
- Functionality of system is distributed to the objects
- Each object has algorithms to accomplish specific tasks

Summary

- Software systems are *complex*
- Software systems are *dynamic*
- To address these difficulties …
 - make extensive use of *abstraction*;
 - build systems that are *modular*, and *composite*.

Summary

- To define a software system, we will include
 - a *description* of the *data* items to be manipulated by the system, and
 - a collection of *algorithms* that provide the system’s *functionality*
- We adopt an object-based methodology that structures the system around the data